找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Transfiniteness; For Graphs, Electric Armen H. Zemanian Book 1996 Springer Science+Business Media New York 1996 Cantor.Finite.Graphs.Markov

[復制鏈接]
查看: 14605|回復: 35
樓主
發(fā)表于 2025-3-21 19:07:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Transfiniteness
副標題For Graphs, Electric
編輯Armen H. Zemanian
視頻videohttp://file.papertrans.cn/929/928235/928235.mp4
圖書封面Titlebook: Transfiniteness; For Graphs, Electric Armen H. Zemanian Book 1996 Springer Science+Business Media New York 1996 Cantor.Finite.Graphs.Markov
描述"What good is a newborn baby?" Michael Faraday‘s reputed response when asked, "What good is magnetic induction?" But, it must be admitted that a newborn baby may die in infancy. What about this one- the idea of transfiniteness for graphs, electrical networks, and random walks? At least its bloodline is robust. Those subjects, along with Cantor‘s transfinite numbers, comprise its ancestry. There seems to be general agreement that the theory of graphs was born when Leonhard Euler published his solution to the "Konigsberg bridge prob- lem" in 1736 [8]. Similarly, the year of birth for electrical network theory might well be taken to be 184 7, when Gustav Kirchhoff published his volt- age and current laws [ 14]. Ever since those dates until just a few years ago, all infinite undirected graphs and networks had an inviolate property: Two branches either were connected through a finite path or were not connected at all. The idea of two branches being connected only through transfinite paths,that is, only through paths having infinitely many branches was never invoked, or so it appears from a perusal of various surveys of infinite graphs [17], [20], [29], [32]. Our objective herein is to e
出版日期Book 1996
關(guān)鍵詞Cantor; Finite; Graphs; Markov; Networks; Symbol; bridge; ordinal
版次1
doihttps://doi.org/10.1007/978-1-4612-0767-2
isbn_softcover978-1-4612-6894-9
isbn_ebook978-1-4612-0767-2
copyrightSpringer Science+Business Media New York 1996
The information of publication is updating

書目名稱Transfiniteness影響因子(影響力)




書目名稱Transfiniteness影響因子(影響力)學科排名




書目名稱Transfiniteness網(wǎng)絡公開度




書目名稱Transfiniteness網(wǎng)絡公開度學科排名




書目名稱Transfiniteness被引頻次




書目名稱Transfiniteness被引頻次學科排名




書目名稱Transfiniteness年度引用




書目名稱Transfiniteness年度引用學科排名




書目名稱Transfiniteness讀者反饋




書目名稱Transfiniteness讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:55 | 只看該作者
第128235主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:16:54 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:07:14 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:06:37 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:35:15 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:07:48 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:43:01 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:45:36 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:56:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
苍溪县| 三门峡市| 高安市| 沭阳县| 翼城县| 叙永县| 东乌珠穆沁旗| 石阡县| 拉萨市| 和林格尔县| 德阳市| 常山县| 噶尔县| 洞口县| 武汉市| 屏边| 远安县| 庄浪县| 玉树县| 成武县| 辽阳市| 华阴市| 邵阳市| 凭祥市| 巴东县| 黄骅市| 斗六市| 深圳市| 阳朔县| 富锦市| 澄江县| 克什克腾旗| 监利县| 合山市| 噶尔县| 卓尼县| 景德镇市| 屏东市| 中超| 上栗县| 开平市|