找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topology and Geometric Group Theory; Ohio State Universit Michael W. Davis,James Fowler,Ian J. Leary Conference proceedings 2016 Springer I

[復(fù)制鏈接]
查看: 55569|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:43:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Topology and Geometric Group Theory
副標(biāo)題Ohio State Universit
編輯Michael W. Davis,James Fowler,Ian J. Leary
視頻videohttp://file.papertrans.cn/927/926495/926495.mp4
概述Includes supplementary material:
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Topology and Geometric Group Theory; Ohio State Universit Michael W. Davis,James Fowler,Ian J. Leary Conference proceedings 2016 Springer I
描述.This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted..Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research..
出版日期Conference proceedings 2016
關(guān)鍵詞57-06, 20-06; Farrell-Jones Conjectures; CAT(0) cube complex; classifying space; ends of a space; group
版次1
doihttps://doi.org/10.1007/978-3-319-43674-6
isbn_softcover978-3-319-82883-1
isbn_ebook978-3-319-43674-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing AG, part of Springer Nature 2016
The information of publication is updating

書目名稱Topology and Geometric Group Theory影響因子(影響力)




書目名稱Topology and Geometric Group Theory影響因子(影響力)學(xué)科排名




書目名稱Topology and Geometric Group Theory網(wǎng)絡(luò)公開度




書目名稱Topology and Geometric Group Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Topology and Geometric Group Theory被引頻次




書目名稱Topology and Geometric Group Theory被引頻次學(xué)科排名




書目名稱Topology and Geometric Group Theory年度引用




書目名稱Topology and Geometric Group Theory年度引用學(xué)科排名




書目名稱Topology and Geometric Group Theory讀者反饋




書目名稱Topology and Geometric Group Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:31 | 只看該作者
Groups with Many Finitary Cohomology Functors,the functor . is . when this is so and we consider the . for ., that is the set of natural numbers for which this holds. It is shown that for the class of groups . there is a dichotomy: the finitary set of such a group is either finite or cofinite. We investigate which sets of natural numbers . can
地板
發(fā)表于 2025-3-22 07:50:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:00:04 | 只看該作者
2194-1009 les complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research..978-3-319-82883-1978-3-319-43674-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
6#
發(fā)表于 2025-3-22 13:12:14 | 只看該作者
Groups with Many Finitary Cohomology Functors,, there are known to be many not in . such as Richard Thompson’s group .. Our theory does not extend beyond the class . at present and so it is an open problem whether the main conclusions of this paper hold for arbitrary groups. There is a survey of recent developments and open questions.
7#
發(fā)表于 2025-3-22 20:44:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:32 | 只看該作者
2194-1009 elatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of
9#
發(fā)表于 2025-3-23 02:37:40 | 只看該作者
10#
發(fā)表于 2025-3-23 07:30:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 01:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
驻马店市| 黄梅县| 韶关市| 左贡县| 富锦市| 土默特左旗| 石台县| 荥经县| 平舆县| 邢台市| 开化县| 惠水县| 泽普县| 南乐县| 华阴市| 盱眙县| 沁水县| 信宜市| 华坪县| 门头沟区| 衡阳县| 巴彦淖尔市| 德州市| 资阳市| 怀来县| 仪陇县| 定兴县| 通河县| 大名县| 崇礼县| 瑞安市| 无锡市| 塔河县| 麻阳| 施甸县| 华安县| 乌兰县| 祥云县| 赣榆县| 祁门县| 萝北县|