找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topology Optimization in Structural Mechanics; G. I. N. Rozvany Book 1997 Springer-Verlag Wien 1997 mechanics.structural mechanics.topolog

[復制鏈接]
查看: 12596|回復: 35
樓主
發(fā)表于 2025-3-21 16:47:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Topology Optimization in Structural Mechanics
編輯G. I. N. Rozvany
視頻videohttp://file.papertrans.cn/927/926486/926486.mp4
叢書名稱CISM International Centre for Mechanical Sciences
圖書封面Titlebook: Topology Optimization in Structural Mechanics;  G. I. N. Rozvany Book 1997 Springer-Verlag Wien 1997 mechanics.structural mechanics.topolog
描述Topology optimization is a relatively new and rapidly expanding field of structural mechanics. It deals with some of the most difficult problems of mechanical sciences but it is also of considerable practical interest, because it can achieve much greater savings than mere cross-section or shape optimization.
出版日期Book 1997
關鍵詞mechanics; structural mechanics; topology
版次1
doihttps://doi.org/10.1007/978-3-7091-2566-3
isbn_softcover978-3-211-82907-3
isbn_ebook978-3-7091-2566-3Series ISSN 0254-1971 Series E-ISSN 2309-3706
issn_series 0254-1971
copyrightSpringer-Verlag Wien 1997
The information of publication is updating

書目名稱Topology Optimization in Structural Mechanics影響因子(影響力)




書目名稱Topology Optimization in Structural Mechanics影響因子(影響力)學科排名




書目名稱Topology Optimization in Structural Mechanics網絡公開度




書目名稱Topology Optimization in Structural Mechanics網絡公開度學科排名




書目名稱Topology Optimization in Structural Mechanics被引頻次




書目名稱Topology Optimization in Structural Mechanics被引頻次學科排名




書目名稱Topology Optimization in Structural Mechanics年度引用




書目名稱Topology Optimization in Structural Mechanics年度引用學科排名




書目名稱Topology Optimization in Structural Mechanics讀者反饋




書目名稱Topology Optimization in Structural Mechanics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:33:10 | 只看該作者
The Homogenization Method for Topology and Shape Optimization,uctures. It starts with a brief survey of periodic homogenization, .- or .-convergence, and the mathematical modeling of composite materials. Then, these notions are used for minimum compliance and weight design of elastic structures in two or three space dimension. Theoretical, as well as numerical
板凳
發(fā)表于 2025-3-22 03:30:46 | 只看該作者
Topology and Shape Optimization Procedures Using Hole Positioning Criteria,ctural behaviour. Currently, the topology is still chosen intuitively or by referring to existing constructions (“Current Design World State”), or it is selected from a number of different variants. The topology optimization aims at the use of mathematical-mechanical strategies in a design process..
地板
發(fā)表于 2025-3-22 05:31:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:43 | 只看該作者
6#
發(fā)表于 2025-3-22 16:04:16 | 只看該作者
Reanalysis Models for Topology Optimization,puted terms of a series expansion, used as high quality basis vectors, and coefficients of a reduced basis expression. The advantage is that the efficiency of local approximations and the improved quality of global approximations are combined to obtain an effective solution procedure..The method is
7#
發(fā)表于 2025-3-22 20:09:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:35:45 | 只看該作者
Topology and Reinforcement Layout Optimization of Disk, Plate, and Shell Structures,inforcement of plates and shells. Special emphasis is devoted to the solution of multiple load case stiffness maximization problems and to the solution of eigenfrequency maximization problems..Two design parametrizations based on the application of layered microstructures of different rank are appli
9#
發(fā)表于 2025-3-23 02:33:27 | 只看該作者
10#
發(fā)表于 2025-3-23 07:07:59 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 02:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
仁寿县| 甘孜| 玛纳斯县| 古田县| 专栏| 邳州市| 杂多县| 水富县| 齐河县| 泰和县| 淮北市| 太白县| 彭泽县| 石泉县| 上高县| 宁强县| 苍梧县| 德兴市| 邹平县| 武定县| 牡丹江市| 龙陵县| 凉城县| 柘城县| 大厂| 四平市| 屯昌县| 台北市| 阜新市| 阳山县| 遂宁市| 章丘市| 玉田县| 兴安县| 克什克腾旗| 渝中区| 泸西县| 沿河| 玉环县| 渭源县| 乌什县|