找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems; Dumitru Motreanu,Viorica Venera Motreanu,Nikol

[復(fù)制鏈接]
樓主: TRACT
11#
發(fā)表于 2025-3-23 10:56:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:01:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:57:12 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:53 | 只看該作者
Nonlinear Elliptic Equations with Neumann Boundary Conditions,ll the results presented here bring novelties with respect to the available literature. We emphasize the specific functional setting and techniques involved in handling the Neumann problems, which are distinct in comparison with those for the Dirichlet problems. The first section of the chapter disc
15#
發(fā)表于 2025-3-24 03:16:26 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:29 | 只看該作者
Morse Theory, efficient results for the computation of critical groups that are powerful tools in the study of multiple solutions. Here an original approach is developed, and improvements of known results are shown. Notes on related literature and comments are provided in a remarks section.
18#
發(fā)表于 2025-3-24 18:00:01 | 只看該作者
Ordinary Differential Equations, term is expressed as a generalized gradient of a locally Lipschitz function. The approach is based on nonsmooth critical point theory. Comments and relevant references are given in a remarks section.
19#
發(fā)表于 2025-3-24 22:54:15 | 只看該作者
Nonlinear Elliptic Equations with Neumann Boundary Conditions,nd section focuses on nonlinear Neumann problems whose differential part is described by a general nonhomogeneous operator. The third section builds a common approach for both sublinear and superlinear cases of semilinear Neumann problems. Related comments and references are given in a remarks section.
20#
發(fā)表于 2025-3-24 23:18:10 | 只看該作者
Nonlinear Operators,gh interest in the sequel. The third section contains essential results on Nemytskii operators highlighting their main continuity and differentiability properties. Comments on the material of this chapter and related literature are given in a remarks section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 巴里| 鹿邑县| 金寨县| 西盟| 汉源县| 黄石市| 遵义市| 区。| 磴口县| 荥阳市| 平和县| 芜湖县| 拜泉县| 二连浩特市| 固始县| 静安区| 海淀区| 台东市| 那坡县| 桦川县| 罗田县| 区。| 齐齐哈尔市| 铁岭县| 班玛县| 揭东县| 柯坪县| 肇源县| 张家港市| 太康县| 武隆县| 体育| 乐清市| 怀柔区| 南投县| 舒兰市| 收藏| 屯门区| 清徐县| 正阳县|