找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Structure ofthe Solution Set for Evolution Inclusions; Yong Zhou,Rong-Nian Wang,Li Peng Book 2017 Springer Nature Singapore Pt

[復(fù)制鏈接]
樓主: Conformist
11#
發(fā)表于 2025-3-23 12:15:40 | 只看該作者
Topological Structure ofthe Solution Set for Evolution Inclusions978-981-10-6656-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
12#
發(fā)表于 2025-3-23 16:19:17 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/u/image/926430.jpg
13#
發(fā)表于 2025-3-23 20:04:31 | 只看該作者
https://doi.org/10.1007/978-981-10-6656-6Topological structure; Attractability for nonlinear evolution inclusions; m-dissipative operators; Cont
14#
發(fā)表于 2025-3-24 00:32:20 | 只看該作者
15#
發(fā)表于 2025-3-24 05:53:19 | 只看該作者
Yong Zhou,Rong-Nian Wang,Li PengSystematically presents topological theory and dynamics for evolution inclusions, together with relevant applications.Covers evolution inclusions with m-dissipative operators, with the Hille-Yosida op
16#
發(fā)表于 2025-3-24 06:42:01 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:18 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:59 | 只看該作者
Quasi-autonomous Evolution Inclusions,ons including limit and weak solutions. Under appropriate assumptions, we show that the set of the limit solutions is a compact.-set. When the right-hand side satisfies the one-sided Perron condition, a variant of the well-known lemma of Filippov-Pli?, as well as a relaxation theorem, are proved. Se
19#
發(fā)表于 2025-3-24 19:28:21 | 只看該作者
20#
發(fā)表于 2025-3-25 01:22:01 | 只看該作者
Neutral Functional Evolution Inclusions,ogical properties of the solution set is investigated. It is shown that the solution set is nonempty, compact and an .-set which means that the solution set may not be a singleton but, from the point of view of algebraic topology, it is equivalent to a point, in the sense that it has the same homolo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 13:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺兰县| 泰宁县| 改则县| 灵武市| 视频| 萨迦县| 长春市| 江西省| 东方市| 昭觉县| 冀州市| 泰兴市| 衡阳县| 阿拉善右旗| 肇源县| 鄂托克前旗| 茌平县| 公主岭市| 房产| 阜城县| 民丰县| 登封市| 习水县| 龙泉市| 琼结县| 南投市| 噶尔县| 香河县| 稷山县| 安顺市| 昌江| 图们市| 民和| 凌源市| 宜黄县| 荥经县| 南华县| 剑河县| 竹北市| 霍林郭勒市| 宁国市|