找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Structure ofthe Solution Set for Evolution Inclusions; Yong Zhou,Rong-Nian Wang,Li Peng Book 2017 Springer Nature Singapore Pt

[復(fù)制鏈接]
樓主: Conformist
11#
發(fā)表于 2025-3-23 12:15:40 | 只看該作者
Topological Structure ofthe Solution Set for Evolution Inclusions978-981-10-6656-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
12#
發(fā)表于 2025-3-23 16:19:17 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/u/image/926430.jpg
13#
發(fā)表于 2025-3-23 20:04:31 | 只看該作者
https://doi.org/10.1007/978-981-10-6656-6Topological structure; Attractability for nonlinear evolution inclusions; m-dissipative operators; Cont
14#
發(fā)表于 2025-3-24 00:32:20 | 只看該作者
15#
發(fā)表于 2025-3-24 05:53:19 | 只看該作者
Yong Zhou,Rong-Nian Wang,Li PengSystematically presents topological theory and dynamics for evolution inclusions, together with relevant applications.Covers evolution inclusions with m-dissipative operators, with the Hille-Yosida op
16#
發(fā)表于 2025-3-24 06:42:01 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:18 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:59 | 只看該作者
Quasi-autonomous Evolution Inclusions,ons including limit and weak solutions. Under appropriate assumptions, we show that the set of the limit solutions is a compact.-set. When the right-hand side satisfies the one-sided Perron condition, a variant of the well-known lemma of Filippov-Pli?, as well as a relaxation theorem, are proved. Se
19#
發(fā)表于 2025-3-24 19:28:21 | 只看該作者
20#
發(fā)表于 2025-3-25 01:22:01 | 只看該作者
Neutral Functional Evolution Inclusions,ogical properties of the solution set is investigated. It is shown that the solution set is nonempty, compact and an .-set which means that the solution set may not be a singleton but, from the point of view of algebraic topology, it is equivalent to a point, in the sense that it has the same homolo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 巨鹿县| 甘肃省| 噶尔县| 山阴县| 巨鹿县| 东阿县| 清远市| 平谷区| 东方市| 杭锦后旗| 兴化市| 九江市| 会昌县| 岳普湖县| 滦平县| 富民县| 林口县| 镇康县| 佛学| 灌云县| 饶河县| 中山市| 防城港市| 普洱| 湘潭县| 晋州市| 金川县| 扶绥县| 阿拉善左旗| 普兰县| 巩留县| 南昌县| 大悟县| 黎平县| 筠连县| 册亨县| 新宁县| 荆州市| 芜湖市| 县级市|