找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Topological Nonlinear Analysis II; Degree, Singularity Michele Matzeu,Alfonso Vignoli Conference proceedings 1997 Birkh?user Boston 1997 D

[復(fù)制鏈接]
樓主: polysomnography
31#
發(fā)表于 2025-3-27 00:09:58 | 只看該作者
Degree for Gradient Equivariant Maps and Equivariant Conley Index,ifferent from 0 on the boundary of Ω, then there is defined an integer Deg(., Ω) — the Brouwer (or topological) degree of . with respect to Ω. Obviously, if in the place of all continuos maps and all open bounded subsets of ?. we take a smaller class of maps and/or a smaller class of subsets then we
32#
發(fā)表于 2025-3-27 02:34:22 | 只看該作者
Variations and Irregularities,al and physical objects, possibly very “irregular” or “degenerate.”.We will first recall some classic notions. Selfadjoint extensions of differential operators, generalized derivatives, finite difference schemes. We will then describe a few important metric, variational and measure theoretic tools,
33#
發(fā)表于 2025-3-27 05:52:52 | 只看該作者
Singularity Theory and Bifurcation Phenomena in Differential Equations,ll perturbations, i.e., to find those functions . which have the property that any nearby smooth function . . is diffeomorphically equivalent to .. This reduces to a local problem, and then to the problem of studying the Taylor expansion of . and trying to determine which terms of the expansion guar
34#
發(fā)表于 2025-3-27 12:40:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:05 | 只看該作者
36#
發(fā)表于 2025-3-27 19:50:28 | 只看該作者
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清苑县| 读书| 安吉县| 曲阜市| 平度市| 缙云县| 色达县| 陵川县| 句容市| 浠水县| 当阳市| 安图县| 紫阳县| 渝北区| 湖北省| 彭水| 松桃| 湘潭市| 尼勒克县| 祁连县| 平乐县| 金溪县| 印江| 宿松县| 兴海县| 永嘉县| 东莞市| 安新县| 满洲里市| 正蓝旗| 云浮市| 凌云县| 息烽县| 六盘水市| 郎溪县| 云阳县| 万宁市| 沙坪坝区| 高陵县| 康乐县| 哈巴河县|