找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Nonlinear Analysis; Degree, Singularity, Michele Matzeu,Alfonso Vignoli Book 1995 Birkh?user Boston 1995 Eigenvalue.bifurcation

[復(fù)制鏈接]
樓主: 誓約
11#
發(fā)表于 2025-3-23 12:26:27 | 只看該作者
https://doi.org/10.1007/978-1-4612-2570-6Eigenvalue; bifurcation; convergence; dynamical systems; hamiltonian system; manifold; singularity; stabili
12#
發(fā)表于 2025-3-23 16:50:02 | 只看該作者
Topological Bifurcation,parameters will be reviewed, with “necessary” and sufficient conditions for bifurcation, both local and global, and the structure of the bifurcation set will be studied. The case of equivariant bifurcation will be considered, with a special application to the case of abelian groups.
13#
發(fā)表于 2025-3-23 21:59:32 | 只看該作者
978-1-4612-7584-8Birkh?user Boston 1995
14#
發(fā)表于 2025-3-23 23:24:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:37:00 | 只看該作者
16#
發(fā)表于 2025-3-24 10:09:37 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:06 | 只看該作者
Positivity of Maps and Applications,and try to limit the intersection with Nussbaum’s survey [38]. We emphasize results which depend upon fixed point arguments. We also, at times, discuss applications to ordinary and partial differential equations. We do not discuss applications to delay equations. These are important but they tend to
18#
發(fā)表于 2025-3-24 17:46:55 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:01 | 只看該作者
Critical Point Theory and Applications to Differential Equations: A Survey,urred during the past 20–25 years. This is too broad a theme for a single survey and we will focus on three particular areas. First we will examine contributions to the minimax approach to critical point theory. In particular the Mountain Pass Theorem, the Saddle Point Theorem, and variants thereupo
20#
發(fā)表于 2025-3-25 00:35:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 吉木萨尔县| 丰宁| 基隆市| 永州市| 连云港市| 中宁县| 石泉县| 乐至县| 平利县| 祁连县| 阜平县| 罗江县| 景谷| 清河县| 华亭县| 志丹县| 鄯善县| 宝鸡市| 石泉县| 浠水县| 周宁县| 河津市| 青海省| 罗田县| 邳州市| 固安县| 丹巴县| 芮城县| 乳山市| 西青区| 梁山县| 喀喇| 闸北区| 武定县| 二连浩特市| 永寿县| 东丽区| 新绛县| 巴林左旗| 嘉定区|