找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Groups and Related Structures, An Introduction to Topological Algebra.; Alexander Arhangel’skii,Mikhail Tkachenko Book 2008 At

[復制鏈接]
查看: 12333|回復: 35
樓主
發(fā)表于 2025-3-21 19:13:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.
編輯Alexander Arhangel’skii,Mikhail Tkachenko
視頻videohttp://file.papertrans.cn/927/926383/926383.mp4
叢書名稱Atlantis Studies in Mathematics
圖書封面Titlebook: Topological Groups and Related Structures, An Introduction to Topological Algebra.;  Alexander Arhangel’skii,Mikhail Tkachenko Book 2008 At
描述Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this
出版日期Book 2008
關鍵詞Area; Scope; algebra; cardinal invariant; cardinal invariants; compactness; construction; eXist; interface; k
版次1
doihttps://doi.org/10.2991/978-94-91216-35-0
isbn_ebook978-94-91216-35-0Series ISSN 1875-7634 Series E-ISSN 2215-1885
issn_series 1875-7634
copyrightAtlantis Press and the authors 2008
The information of publication is updating

書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.影響因子(影響力)




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.影響因子(影響力)學科排名




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.網(wǎng)絡公開度




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.網(wǎng)絡公開度學科排名




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.被引頻次




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.被引頻次學科排名




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.年度引用




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.年度引用學科排名




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.讀者反饋




書目名稱Topological Groups and Related Structures, An Introduction to Topological Algebra.讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:49:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:05 | 只看該作者
地板
發(fā)表于 2025-3-22 08:18:37 | 只看該作者
Introduction to Topological Groups and Semigroups,
5#
發(fā)表于 2025-3-22 09:26:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:25 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:51 | 只看該作者
Actions of Topological Groups on Topological Spaces,
8#
發(fā)表于 2025-3-22 21:29:44 | 只看該作者
Topological Groups and Related Structures, An Introduction to Topological Algebra.
9#
發(fā)表于 2025-3-23 04:52:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:19:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 22:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
杭锦后旗| 崇文区| 海林市| 宾阳县| 固镇县| 塔城市| 九龙城区| 屏东市| 东光县| 苍山县| 东明县| 德安县| 剑河县| 通辽市| 营山县| 右玉县| 百色市| 泗阳县| 广昌县| 屏东市| 确山县| 若羌县| 塔城市| 二连浩特市| 北票市| 灵石县| 临海市| 阿瓦提县| 沛县| 江永县| 沂南县| 武清区| 浙江省| 镇康县| 伊通| 枣庄市| 博白县| 贵阳市| 罗江县| 阳山县| 新丰县|