找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Dimension and Dynamical Systems; Michel Coornaert Textbook 2015 Springer International Publishing Switzerland 2015 Amenable Gr

[復(fù)制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 06:24:24 | 只看該作者
Mean Topological Dimension for Continuous MapsIn this chapter, the term “dynamical system” refers to a pair (.), where . is a topological space and . a continuous map from . into itself.
22#
發(fā)表于 2025-3-25 10:53:04 | 只看該作者
Shifts and Subshifts over ,In this chapter, we introduce the shift map . on the space of bi-infinite sequences of points in a topological space ..
23#
發(fā)表于 2025-3-25 14:02:50 | 只看該作者
Applications of Mean Dimension to Embedding ProblemsIn this chapter, we prove the embedding theorem of Jaworski (Theorem?.) which asserts that every dynamical system (.,?.), where . is a homeomorphism without periodic points of a compact metrizable space . such that ., embeds in the shift ..
24#
發(fā)表于 2025-3-25 15:56:07 | 只看該作者
Amenable GroupsThis chapter is devoted to the class of amenable groups, a class of groups which contains all finite groups and all abelian groups and which is closed under several group operations, in particular taking subgroups, taking extensions, and taking direct limits.
25#
發(fā)表于 2025-3-25 21:09:45 | 只看該作者
26#
發(fā)表于 2025-3-26 03:05:14 | 只看該作者
27#
發(fā)表于 2025-3-26 07:04:28 | 只看該作者
Textbook 2015ant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts..A large number of revisions and addition
28#
發(fā)表于 2025-3-26 10:30:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:32 | 只看該作者
instance the structure of atomic clusters and the marriage of density functional theory with molecular dynamics and simulated annealing, have provided additiona978-1-4757-9977-4978-1-4757-9975-0Series ISSN 0258-1221
30#
發(fā)表于 2025-3-26 18:13:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 双牌县| 涞水县| 乐都县| 开封市| 晋江市| 伊春市| 曲周县| 长宁县| 临澧县| 东宁县| 子长县| 九江市| 卓资县| 巴彦淖尔市| 开化县| 拜城县| 濉溪县| 邯郸县| 惠水县| 武义县| 黄龙县| 墨玉县| 西藏| 哈尔滨市| 道真| 平泉县| 邛崃市| 台中县| 定南县| 长顺县| 连山| 阿图什市| 新河县| 闵行区| 宜兰市| 光山县| 依兰县| 林州市| 钟山县| 麻江县|