找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Dimension and Dynamical Systems; Michel Coornaert Textbook 2015 Springer International Publishing Switzerland 2015 Amenable Gr

[復制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 06:24:24 | 只看該作者
Mean Topological Dimension for Continuous MapsIn this chapter, the term “dynamical system” refers to a pair (.), where . is a topological space and . a continuous map from . into itself.
22#
發(fā)表于 2025-3-25 10:53:04 | 只看該作者
Shifts and Subshifts over ,In this chapter, we introduce the shift map . on the space of bi-infinite sequences of points in a topological space ..
23#
發(fā)表于 2025-3-25 14:02:50 | 只看該作者
Applications of Mean Dimension to Embedding ProblemsIn this chapter, we prove the embedding theorem of Jaworski (Theorem?.) which asserts that every dynamical system (.,?.), where . is a homeomorphism without periodic points of a compact metrizable space . such that ., embeds in the shift ..
24#
發(fā)表于 2025-3-25 15:56:07 | 只看該作者
Amenable GroupsThis chapter is devoted to the class of amenable groups, a class of groups which contains all finite groups and all abelian groups and which is closed under several group operations, in particular taking subgroups, taking extensions, and taking direct limits.
25#
發(fā)表于 2025-3-25 21:09:45 | 只看該作者
26#
發(fā)表于 2025-3-26 03:05:14 | 只看該作者
27#
發(fā)表于 2025-3-26 07:04:28 | 只看該作者
Textbook 2015ant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts..A large number of revisions and addition
28#
發(fā)表于 2025-3-26 10:30:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:32 | 只看該作者
instance the structure of atomic clusters and the marriage of density functional theory with molecular dynamics and simulated annealing, have provided additiona978-1-4757-9977-4978-1-4757-9975-0Series ISSN 0258-1221
30#
發(fā)表于 2025-3-26 18:13:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-30 12:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜陵市| 双城市| 益阳市| 寿宁县| 尉犁县| 平果县| 平江县| 龙海市| 桃源县| 大名县| 隆安县| 霞浦县| 朝阳县| 长子县| 望城县| 丹阳市| 厦门市| 江永县| 宝鸡市| 吉首市| 肇源县| 姚安县| 扎兰屯市| 财经| 庆元县| 镇平县| 资溪县| 柯坪县| 定结县| 永和县| 乌拉特前旗| 建平县| 宣城市| 阳东县| 准格尔旗| 九寨沟县| 芜湖市| 闵行区| 井冈山市| 万州区| 江西省|