找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in Geometry, Coding Theory and Cryptography; Arnaldo Garcia,Henning Stichtenoth Book 2007 Springer Science+Business Media B.V. 2007

[復(fù)制鏈接]
查看: 55879|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:29:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Topics in Geometry, Coding Theory and Cryptography
編輯Arnaldo Garcia,Henning Stichtenoth
視頻videohttp://file.papertrans.cn/927/926183/926183.mp4
概述Serves as an introduction and invitation to several main directions of research in the area of Function Fields over Finite Fields and their various applications to Information Theory.Reasonably access
叢書名稱Algebra and Applications
圖書封面Titlebook: Topics in Geometry, Coding Theory and Cryptography;  Arnaldo Garcia,Henning Stichtenoth Book 2007 Springer Science+Business Media B.V. 2007
描述.The theory of algebraic function fields over finite fields has its origins in number theory. However, after Goppa`s discovery of algebraic geometry codes around 1980, many applications of function fields were found in different areas of mathematics and information theory, such as coding theory, sphere packings and lattices, sequence design, and cryptography. The use of function fields often led to better results than those of classical approaches...This book presents survey articles on some of these new developments. Most of the material is directly related to the interaction between function fields and their various applications; in particular the structure and the number of rational places of function fields are of great significance. The topics focus on material which has not yet been presented in other books or survey articles. Wherever applications are pointed out, a special effort has been made to present some background concerning their use..
出版日期Book 2007
關(guān)鍵詞algebra; coding theory; cryptography; finite field; information; information theory; number theory
版次1
doihttps://doi.org/10.1007/1-4020-5334-4
isbn_softcover978-90-481-7345-7
isbn_ebook978-1-4020-5334-4Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer Science+Business Media B.V. 2007
The information of publication is updating

書目名稱Topics in Geometry, Coding Theory and Cryptography影響因子(影響力)




書目名稱Topics in Geometry, Coding Theory and Cryptography影響因子(影響力)學(xué)科排名




書目名稱Topics in Geometry, Coding Theory and Cryptography網(wǎng)絡(luò)公開度




書目名稱Topics in Geometry, Coding Theory and Cryptography網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Topics in Geometry, Coding Theory and Cryptography被引頻次




書目名稱Topics in Geometry, Coding Theory and Cryptography被引頻次學(xué)科排名




書目名稱Topics in Geometry, Coding Theory and Cryptography年度引用




書目名稱Topics in Geometry, Coding Theory and Cryptography年度引用學(xué)科排名




書目名稱Topics in Geometry, Coding Theory and Cryptography讀者反饋




書目名稱Topics in Geometry, Coding Theory and Cryptography讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:59:18 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:16 | 只看該作者
Arnaldo Garcia,Henning StichtenothServes as an introduction and invitation to several main directions of research in the area of Function Fields over Finite Fields and their various applications to Information Theory.Reasonably access
5#
發(fā)表于 2025-3-22 11:36:28 | 只看該作者
EXPLICIT TOWERS OF FUNCTION FIELDS OVER FINITE FIELDS,r finite fields. More specifically, we treat here the case of explicit towers; i.e., towers where the function fields are given by explicit equations. The asymptotic behaviour of the genus and of the number of rational places in towers are important features for applications to coding theory and to cryptography (cf. Chapter 2).
6#
發(fā)表于 2025-3-22 13:52:13 | 只看該作者
FUNCTION FIELDS OVER FINITE FIELDS AND THEIR APPLICATIONS TO CRYPTOGRAPHY,ography. This has led researchers in a natural way to consider methods based on some specified function fields in order to construct cryptographic schemes, such as schemes for unconditionally secure authentication, traitor tracing, secret sharing, broadcast encryption and secure multicast, just to mention a few.
7#
發(fā)表于 2025-3-22 19:00:32 | 只看該作者
ARTIN-SCHREIER EXTENSIONS AND THEIR APPLICATIONS, is the degree of the field extension .. If n is relatively prime to ., and there is a primitive . . root of unity in ., then . is a ., i.e. . = .(.) with . . ∈ .. If . = ., then . is an ., i.e. . = .(.) with . . – . ∈ .. Finally, if . = . . for . > 1, then the extension . can be described in terms of .. For these facts, see [34, Section VI.7].
8#
發(fā)表于 2025-3-22 22:04:51 | 只看該作者
9#
發(fā)表于 2025-3-23 04:33:35 | 只看該作者
Algebra and Applicationshttp://image.papertrans.cn/u/image/926183.jpg
10#
發(fā)表于 2025-3-23 08:08:12 | 只看該作者
https://doi.org/10.1007/1-4020-5334-4algebra; coding theory; cryptography; finite field; information; information theory; number theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 11:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文登市| 新平| 普宁市| 咸宁市| 牡丹江市| 济宁市| 苏州市| 通河县| 五河县| 瓦房店市| 巴塘县| 桓仁| 翼城县| 安国市| 家居| 宣汉县| 麦盖提县| 静宁县| 大新县| 灌云县| 大关县| 儋州市| 康乐县| 金乡县| 耒阳市| 肥城市| 枝江市| 郎溪县| 宜昌市| 增城市| 徐州市| 朝阳区| 云和县| 吉隆县| 安达市| 武鸣县| 南岸区| 房产| 土默特左旗| 庆城县| 台北市|