找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Tilings of the Plane; From Escher via M?bi Ehrhard Behrends Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
查看: 27462|回復: 35
樓主
發(fā)表于 2025-3-21 16:32:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Tilings of the Plane
副標題From Escher via M?bi
編輯Ehrhard Behrends
視頻videohttp://file.papertrans.cn/926/925389/925389.mp4
概述Mathematics of symmetries and tesselation.Explained in detail with numerous colour illustrations.For mathematicians and all other interested parties with a mathematical background
叢書名稱Mathematics Study Resources
圖書封面Titlebook: Tilings of the Plane; From Escher via M?bi Ehrhard Behrends Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.The aim of the book is to study symmetries and?tesselation, which have long interested artists and mathematicians. Famous examples are the works created by the Arabs in the Alhambra and the paintings of the Dutch painter Maurits Escher. Mathematicians did not take up the subject intensively until the 19th century. In the process, the visualisation of mathematical relationships leads to very appealing images. Three approaches are described in this book..In Part I, it is shown that there are 17 principally different possibilities of?tesselation?of the plane, the so-called ‘plane crystal groups‘. Complementary to this, ideas of Harald Heesch are described, who showed how these theoretical results can be put into practice: He gave a catalogue of 28 procedures that one can use creatively oneself?–?following in the footsteps of Escher, so to speak?–?to create artistically sophisticated?tesselation..In the corresponding investigations forthe complex plane in Part II, movements are replaced by bijective holomorphic mappings. This leads into the theory of groups of M?bius transformations: Kleinian groups, Schottky groups, etc. There are also interesting connections to hyperbolic geometry..
出版日期Textbook 2022
關鍵詞Symmetry; Parqueting; Mathematics and art; Escher; M?bius; M?bius transformations; hyperbolic geometry; Pen
版次1
doihttps://doi.org/10.1007/978-3-658-38810-2
isbn_softcover978-3-658-38809-6
isbn_ebook978-3-658-38810-2Series ISSN 2731-3824 Series E-ISSN 2731-3832
issn_series 2731-3824
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Tilings of the Plane影響因子(影響力)




書目名稱Tilings of the Plane影響因子(影響力)學科排名




書目名稱Tilings of the Plane網(wǎng)絡公開度




書目名稱Tilings of the Plane網(wǎng)絡公開度學科排名




書目名稱Tilings of the Plane被引頻次




書目名稱Tilings of the Plane被引頻次學科排名




書目名稱Tilings of the Plane年度引用




書目名稱Tilings of the Plane年度引用學科排名




書目名稱Tilings of the Plane讀者反饋




書目名稱Tilings of the Plane讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:53:37 | 只看該作者
第125389主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:34:42 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:31:03 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:11:25 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:01:02 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:53:37 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:07:24 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:24:50 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:12:20 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
和林格尔县| 恩平市| 滁州市| 和田县| 康保县| 通榆县| 东宁县| 九寨沟县| 江源县| 界首市| 齐河县| 叙永县| 炎陵县| 大余县| 铁岭市| 海淀区| 酒泉市| 兴仁县| 荣成市| 沁水县| 富源县| 连云港市| 新平| 德兴市| 甘南县| 碌曲县| 天等县| 宜兴市| 太保市| 开平市| 武定县| 额尔古纳市| 甘南县| 郑州市| 延长县| 正蓝旗| 滁州市| 华安县| 德格县| 吉木乃县| 涪陵区|