找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm; Jean-Beno?t Bost Book 2020 Springer

[復(fù)制鏈接]
查看: 27263|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:30:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm
編輯Jean-Beno?t Bost
視頻videohttp://file.papertrans.cn/925/924748/924748.mp4
概述Contains a complete account of the theta invariants.Presents the author‘s theory of infinite Hermitian vector bundles over arithmetic curves.Provides many interesting original insights and ties to oth
叢書名稱Progress in Mathematics
圖書封面Titlebook: Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm;  Jean-Beno?t Bost Book 2020 Springer
描述.This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions..The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication.?.
出版日期Book 2020
關(guān)鍵詞geometry of numbers (Euclidean lattices); transcendence theory; arithmetic curve; Diophantine geometry;
版次1
doihttps://doi.org/10.1007/978-3-030-44329-0
isbn_softcover978-3-030-44331-3
isbn_ebook978-3-030-44329-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm影響因子(影響力)




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm影響因子(影響力)學(xué)科排名




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm網(wǎng)絡(luò)公開度




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm被引頻次




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm被引頻次學(xué)科排名




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm年度引用




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm年度引用學(xué)科排名




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm讀者反饋




書目名稱Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithm讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:09 | 只看該作者
第124748主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:27:10 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:06:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:39:06 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:48:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:20:01 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:01:05 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:18:27 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:07:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 汉源县| 肇源县| 绍兴县| 炉霍县| 民勤县| 交口县| 四平市| 固阳县| 乳源| 南部县| 天等县| 广德县| 达尔| 阜南县| 古交市| 石嘴山市| 大邑县| 山阴县| 岑溪市| 漠河县| 蒙山县| 渭源县| 涟水县| 海丰县| 凤庆县| 屏边| 平湖市| 阳江市| 广汉市| 黔西县| 雅江县| 兴安县| 临高县| 双峰县| 大田县| 晋中市| 新平| 县级市| 乡城县| 永修县|