找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Theory of Algebraic Surfaces; Kunihiko Kodaira Book 2020 Springer Nature Singapore Pte Ltd. 2020 exact sequence.canonical line bundles.K3

[復(fù)制鏈接]
查看: 10432|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:59:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Theory of Algebraic Surfaces
編輯Kunihiko Kodaira
視頻videohttp://file.papertrans.cn/924/923758/923758.mp4
概述Discusses the fundamental topics in the theory of complex algebraic surfaces.Serves as an introductory textbook for graduate students of algebraic geometry.Requires only a basic knowledge of complex m
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Theory of Algebraic Surfaces;  Kunihiko Kodaira Book 2020 Springer Nature Singapore Pte Ltd. 2020 exact sequence.canonical line bundles.K3
描述This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein‘s theorem for curves on a surface and Noether‘s formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite..
出版日期Book 2020
關(guān)鍵詞exact sequence; canonical line bundles; K3 surfaces; Riemann--Roch theorem; the first Chern class
版次1
doihttps://doi.org/10.1007/978-981-15-7380-4
isbn_softcover978-981-15-7379-8
isbn_ebook978-981-15-7380-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Theory of Algebraic Surfaces影響因子(影響力)




書目名稱Theory of Algebraic Surfaces影響因子(影響力)學(xué)科排名




書目名稱Theory of Algebraic Surfaces網(wǎng)絡(luò)公開(kāi)度




書目名稱Theory of Algebraic Surfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Theory of Algebraic Surfaces被引頻次




書目名稱Theory of Algebraic Surfaces被引頻次學(xué)科排名




書目名稱Theory of Algebraic Surfaces年度引用




書目名稱Theory of Algebraic Surfaces年度引用學(xué)科排名




書目名稱Theory of Algebraic Surfaces讀者反饋




書目名稱Theory of Algebraic Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:38 | 只看該作者
第123758主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:02:06 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:31 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:59:23 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:50:54 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:12:59 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:32:20 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:32 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:56:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 社旗县| 方正县| 台前县| 外汇| 绥化市| 黔西县| 娄烦县| 彭泽县| 开鲁县| 乐亭县| 盱眙县| 海晏县| 肥乡县| 克山县| 正定县| 博野县| 鹿泉市| 宁阳县| 辽阳县| 睢宁县| 北海市| 鸡东县| 普定县| 开化县| 筠连县| 邢台市| 兴城市| 宁明县| 新安县| 峨边| 平塘县| 兰州市| 瑞金市| 贵州省| 荥经县| 油尖旺区| 吕梁市| 十堰市| 孝昌县| 金门县|