找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Theory and Applications of Gaussian Quadrature Methods; Narayan Kovvali Book 2011 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
查看: 38348|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Theory and Applications of Gaussian Quadrature Methods
編輯Narayan Kovvali
視頻videohttp://file.papertrans.cn/924/923554/923554.mp4
叢書名稱Synthesis Lectures on Algorithms and Software in Engineering
圖書封面Titlebook: Theory and Applications of Gaussian Quadrature Methods;  Narayan Kovvali Book 2011 The Editor(s) (if applicable) and The Author(s), under e
描述Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software
出版日期Book 2011
版次1
doihttps://doi.org/10.1007/978-3-031-01517-5
isbn_softcover978-3-031-00389-9
isbn_ebook978-3-031-01517-5Series ISSN 1938-1727 Series E-ISSN 1938-1735
issn_series 1938-1727
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Theory and Applications of Gaussian Quadrature Methods影響因子(影響力)




書目名稱Theory and Applications of Gaussian Quadrature Methods影響因子(影響力)學(xué)科排名




書目名稱Theory and Applications of Gaussian Quadrature Methods網(wǎng)絡(luò)公開(kāi)度




書目名稱Theory and Applications of Gaussian Quadrature Methods網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Theory and Applications of Gaussian Quadrature Methods被引頻次




書目名稱Theory and Applications of Gaussian Quadrature Methods被引頻次學(xué)科排名




書目名稱Theory and Applications of Gaussian Quadrature Methods年度引用




書目名稱Theory and Applications of Gaussian Quadrature Methods年度引用學(xué)科排名




書目名稱Theory and Applications of Gaussian Quadrature Methods讀者反饋




書目名稱Theory and Applications of Gaussian Quadrature Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:48:36 | 只看該作者
第123554主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:08:32 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:01:57 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:54:29 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:48:52 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:00:03 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:41:59 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:08:49 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:12:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成安县| 广灵县| 孝义市| 三台县| 北流市| 双江| 古田县| 崇仁县| 苏尼特左旗| 黄大仙区| 呼和浩特市| 漾濞| 贡嘎县| 静宁县| 南充市| 韶关市| 宾川县| 云阳县| 厦门市| 临朐县| 康平县| 南江县| 商河县| 多伦县| 清水县| 霞浦县| 平南县| 安吉县| 灵川县| 镶黄旗| 讷河市| 永川市| 孟州市| 城固县| 宁安市| 昌宁县| 昆山市| 普宁市| 和政县| 兴国县| 隆昌县|