找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Volume of Vector Fields on Riemannian Manifolds; Main Results and Ope Olga Gil-Medrano Book 2023 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 49320|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:27:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Volume of Vector Fields on Riemannian Manifolds
副標(biāo)題Main Results and Ope
編輯Olga Gil-Medrano
視頻videohttp://file.papertrans.cn/923/922095/922095.mp4
概述The first book devoted to the volume functional on the space of vector fields on a Riemannian manifold.Enables the reader to rapidly gain deep insight into the subject.Includes many open problems, enc
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: The Volume of Vector Fields on Riemannian Manifolds; Main Results and Ope Olga Gil-Medrano Book 2023 The Editor(s) (if applicable) and The
描述.This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results.?The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs...A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); athorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three...Each chapter con
出版日期Book 2023
關(guān)鍵詞Riemannian Manifolds; Minimal Submanifolds; Minimal Vector Fields; Stability of Minimal Vector Fields; H
版次1
doihttps://doi.org/10.1007/978-3-031-36857-8
isbn_softcover978-3-031-36856-1
isbn_ebook978-3-031-36857-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱The Volume of Vector Fields on Riemannian Manifolds影響因子(影響力)




書目名稱The Volume of Vector Fields on Riemannian Manifolds影響因子(影響力)學(xué)科排名




書目名稱The Volume of Vector Fields on Riemannian Manifolds網(wǎng)絡(luò)公開度




書目名稱The Volume of Vector Fields on Riemannian Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Volume of Vector Fields on Riemannian Manifolds被引頻次




書目名稱The Volume of Vector Fields on Riemannian Manifolds被引頻次學(xué)科排名




書目名稱The Volume of Vector Fields on Riemannian Manifolds年度引用




書目名稱The Volume of Vector Fields on Riemannian Manifolds年度引用學(xué)科排名




書目名稱The Volume of Vector Fields on Riemannian Manifolds讀者反饋




書目名稱The Volume of Vector Fields on Riemannian Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:43 | 只看該作者
第122095主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:38:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:18:21 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:25:07 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:05:27 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 21:03:37 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:52:21 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:42:46 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:45:40 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 武冈市| 林甸县| 高州市| 丹棱县| 绥江县| 洱源县| 应用必备| 手游| 桃园市| 连平县| 巴马| 凤阳县| 富源县| 洛川县| 米林县| 中西区| 敦化市| 田东县| 辉县市| 五大连池市| 依安县| 长岛县| 平邑县| 龙井市| 疏勒县| 华亭县| 志丹县| 新沂市| 昂仁县| 舟山市| 铁岭市| 白水县| 肇州县| 德令哈市| 兴和县| 芦山县| 阿拉尔市| 伊通| 永泰县| 白银市|