找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Shallow Water Wave Equations: Formulation, Analysis and Application; Ingemar Kinnmark Book 1986 Springer-Verlag Berlin, Heidelberg 198

[復(fù)制鏈接]
查看: 26695|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:16:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application
編輯Ingemar Kinnmark
視頻videohttp://file.papertrans.cn/920/919701/919701.mp4
叢書名稱Lecture Notes in Engineering
圖書封面Titlebook: The Shallow Water Wave Equations: Formulation, Analysis and Application;  Ingemar Kinnmark Book 1986 Springer-Verlag Berlin, Heidelberg 198
描述1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo- mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele- ment. The former are obtained indirectly, through subtraction of the cont
出版日期Book 1986
關(guān)鍵詞Fourier Analysis; finite element method; fluid; friction; information; mass; operator; peat; pressure; pressu
版次1
doihttps://doi.org/10.1007/978-3-642-82646-7
isbn_softcover978-3-540-16031-1
isbn_ebook978-3-642-82646-7Series ISSN 0176-5035
issn_series 0176-5035
copyrightSpringer-Verlag Berlin, Heidelberg 1986
The information of publication is updating

書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application影響因子(影響力)




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application影響因子(影響力)學(xué)科排名




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application網(wǎng)絡(luò)公開度




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application被引頻次




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application被引頻次學(xué)科排名




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application年度引用




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application年度引用學(xué)科排名




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application讀者反饋




書目名稱The Shallow Water Wave Equations: Formulation, Analysis and Application讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:17:44 | 只看該作者
Lecture Notes in Engineeringhttp://image.papertrans.cn/t/image/919701.jpg
地板
發(fā)表于 2025-3-22 08:11:03 | 只看該作者
https://doi.org/10.1007/978-3-642-82646-7Fourier Analysis; finite element method; fluid; friction; information; mass; operator; peat; pressure; pressu
5#
發(fā)表于 2025-3-22 12:20:01 | 只看該作者
6#
發(fā)表于 2025-3-22 14:52:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:57:24 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:12 | 只看該作者
0176-5035 d. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is tota
9#
發(fā)表于 2025-3-23 01:40:59 | 只看該作者
Book 1986y be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid de
10#
發(fā)表于 2025-3-23 09:11:53 | 只看該作者
M. Hundeikerology with coefficients in a local system.Presents a powerfu.This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄梅县| 墨玉县| 五大连池市| 宁安市| 沐川县| 阳东县| 河北区| 昌宁县| 揭西县| 宁乡县| 景德镇市| 淮安市| 尤溪县| 凤凰县| 会昌县| 依安县| 石河子市| 尖扎县| 贵阳市| 包头市| 绥江县| 双辽市| 明星| 扎兰屯市| 名山县| 镇赉县| 礼泉县| 和顺县| 沙洋县| 浪卡子县| 常德市| 兰州市| 绥化市| 合肥市| 府谷县| 康保县| 金乡县| 中宁县| 上栗县| 筠连县| 南涧|