找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Quasispecies Equation and Classical Population Models; Rapha?l Cerf,Joseba Dalmau Book 2022 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 12123|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:14:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Quasispecies Equation and Classical Population Models
編輯Rapha?l Cerf,Joseba Dalmau
視頻videohttp://file.papertrans.cn/919/918110/918110.mp4
概述This book provides an in-depth study of the Eigen‘s Quasispecies equation in the context of population models..The case of the Wright-Fisher model is treated in detail, other classical population mode
叢書名稱Probability Theory and Stochastic Modelling
圖書封面Titlebook: The Quasispecies Equation and Classical Population Models;  Rapha?l Cerf,Joseba Dalmau Book 2022 The Editor(s) (if applicable) and The Auth
描述.This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen’s famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers..It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright–Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes..Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation.?.This book will be of interest to mathematicians and theoretical ecologists/biologists wor
出版日期Book 2022
關(guān)鍵詞Analysis of Quasispecies equation; Manfred Eigen quasispecies model; Population models book; Mutation-S
版次1
doihttps://doi.org/10.1007/978-3-031-08663-2
isbn_softcover978-3-031-08665-6
isbn_ebook978-3-031-08663-2Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱The Quasispecies Equation and Classical Population Models影響因子(影響力)




書目名稱The Quasispecies Equation and Classical Population Models影響因子(影響力)學(xué)科排名




書目名稱The Quasispecies Equation and Classical Population Models網(wǎng)絡(luò)公開(kāi)度




書目名稱The Quasispecies Equation and Classical Population Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱The Quasispecies Equation and Classical Population Models被引頻次




書目名稱The Quasispecies Equation and Classical Population Models被引頻次學(xué)科排名




書目名稱The Quasispecies Equation and Classical Population Models年度引用




書目名稱The Quasispecies Equation and Classical Population Models年度引用學(xué)科排名




書目名稱The Quasispecies Equation and Classical Population Models讀者反饋




書目名稱The Quasispecies Equation and Classical Population Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:23:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:28:14 | 只看該作者
978-3-031-08665-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 08:35:30 | 只看該作者
The Quasispecies Equation and Classical Population Models978-3-031-08663-2Series ISSN 2199-3130 Series E-ISSN 2199-3149
5#
發(fā)表于 2025-3-22 12:20:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:14:59 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:04 | 只看該作者
8#
發(fā)表于 2025-3-22 22:49:24 | 只看該作者
9#
發(fā)表于 2025-3-23 03:33:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:25:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五常市| 邓州市| 永川市| 浙江省| 洪泽县| 灵川县| 建瓯市| 凤阳县| 秦皇岛市| 剑川县| 南丰县| 神木县| 增城市| 深泽县| 平舆县| 尚义县| 梁平县| 南投市| 惠州市| 东丽区| 万年县| 峨眉山市| 天长市| 双流县| 镇巴县| 岱山县| 蓬安县| 西吉县| 桦甸市| 汝阳县| 普格县| 宜兰县| 泽州县| 海林市| 永顺县| 台江县| 眉山市| 南华县| 清原| 阿图什市| 南昌县|