找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Nonlinear Limit-Point/Limit-Circle Problem; Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef Book 2004 Birkh?user Boston 2004 Derivative.O

[復(fù)制鏈接]
查看: 38585|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:25:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Nonlinear Limit-Point/Limit-Circle Problem
編輯Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef
視頻videohttp://file.papertrans.cn/916/915086/915086.mp4
概述Contains more than 25 open problems for future research.More than 120 references that provide up-to-date resources
圖書封面Titlebook: The Nonlinear Limit-Point/Limit-Circle Problem;  Miroslav Bartu?ek,Zuzana Do?lá,John R. Graef Book 2004 Birkh?user Boston 2004 Derivative.O
描述.First posed by Hermann Weyl in 1910, the limit–point/limit–circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. This self-contained monograph traces the evolution of this problem from its inception to its modern-day extensions to the study of deficiency indices and analogous properties for nonlinear equations. ...The book opens with a discussion of the problem in the linear case, as Weyl originally stated it, and then proceeds to a generalization for nonlinear higher-order equations. En route, the authors distill the classical theorems for second and higher-order linear equations, and carefully map the progression to nonlinear limit–point results. The relationship between the limit–point/limit–circle properties and the boundedness, oscillation, and convergence of solutions is explored, and in the final chapter, the connection between limit–point/limit–circle problems and spectral theory is examined in detail....With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, o
出版日期Book 2004
關(guān)鍵詞Derivative; Operator theory; Sturm–Liouville theory; differential equation; functional analysis; ordinary
版次1
doihttps://doi.org/10.1007/978-0-8176-8218-7
isbn_softcover978-0-8176-3562-6
isbn_ebook978-0-8176-8218-7
copyrightBirkh?user Boston 2004
The information of publication is updating

書目名稱The Nonlinear Limit-Point/Limit-Circle Problem影響因子(影響力)




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem影響因子(影響力)學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem網(wǎng)絡(luò)公開度




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem被引頻次




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem被引頻次學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem年度引用




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem年度引用學(xué)科排名




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem讀者反饋




書目名稱The Nonlinear Limit-Point/Limit-Circle Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:34:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:09 | 只看該作者
yl in 1910, the limit–point/limit–circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. This self-contained monograph traces the evolution of this problem from its inception to its modern-day extensions to the stu
6#
發(fā)表于 2025-3-22 15:03:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:30 | 只看該作者
8#
發(fā)表于 2025-3-22 21:54:28 | 只看該作者
between limit–point/limit–circle problems and spectral theory is examined in detail....With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, o978-0-8176-3562-6978-0-8176-8218-7
9#
發(fā)表于 2025-3-23 02:03:37 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:08:09 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵石县| 南木林县| 洞头县| 青川县| 彰武县| 永城市| 赤水市| 新竹县| 东乌珠穆沁旗| 天全县| 祁连县| 于田县| 麻栗坡县| 乌海市| 英超| 沛县| 秦安县| 京山县| 教育| 乌拉特后旗| 珠海市| 缙云县| 教育| 锡林郭勒盟| 宝兴县| 赣州市| 涞源县| 乡宁县| 噶尔县| 郸城县| 波密县| 赞皇县| 汝城县| 新和县| 怀柔区| 内黄县| 文昌市| 惠水县| 翼城县| 博湖县| 平顺县|