找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Moment-Weight Inequality and the Hilbert–Mumford Criterion; GIT from the Differe Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S Boo

[復(fù)制鏈接]
查看: 15142|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:06:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion
副標(biāo)題GIT from the Differe
編輯Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S
視頻videohttp://file.papertrans.cn/915/914263/914263.mp4
概述Provides the first complete and thorough treatment of GIT from a differential geometric viewpoint.Treats Hamiltonian group actions on general, not necessarily projective, compact K?hler manifolds.Pres
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: The Moment-Weight Inequality and the Hilbert–Mumford Criterion; GIT from the Differe Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S Boo
描述This book provides an introduction to geometric invariant theory from a differential geometric viewpoint.? It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers..The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects.? It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.?.
出版日期Book 2021
關(guān)鍵詞Symplectic Geometry; K?hler Manifold; Hamiltonian Group Action; Moment Map; Mumford Weights; Kempf-Ness F
版次1
doihttps://doi.org/10.1007/978-3-030-89300-2
isbn_softcover978-3-030-89299-9
isbn_ebook978-3-030-89300-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion影響因子(影響力)




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion被引頻次




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion被引頻次學(xué)科排名




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion年度引用




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion年度引用學(xué)科排名




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion讀者反饋




書(shū)目名稱(chēng)The Moment-Weight Inequality and the Hilbert–Mumford Criterion讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:35:39 | 只看該作者
The Moment-Weight Inequality and the Hilbert–Mumford CriterionGIT from the Differe
地板
發(fā)表于 2025-3-22 05:51:56 | 只看該作者
0075-8434 l, not necessarily projective, compact K?hler manifolds.PresThis book provides an introduction to geometric invariant theory from a differential geometric viewpoint.? It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different area
5#
發(fā)表于 2025-3-22 10:11:00 | 只看該作者
6#
發(fā)表于 2025-3-22 14:51:53 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:16 | 只看該作者
https://doi.org/10.1007/978-3-030-89300-2Symplectic Geometry; K?hler Manifold; Hamiltonian Group Action; Moment Map; Mumford Weights; Kempf-Ness F
8#
發(fā)表于 2025-3-22 21:54:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:44:51 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德县| 军事| 聂拉木县| 广汉市| 信宜市| 夏邑县| 秭归县| 福海县| 新兴县| 两当县| 游戏| 牡丹江市| 牡丹江市| 嵊泗县| 宿迁市| 图们市| 青冈县| 绩溪县| 天津市| 大厂| 乌兰县| 花莲县| 巴楚县| 寻甸| 若尔盖县| 濮阳市| 门头沟区| 隆安县| 台北市| 潮州市| 沛县| 吉林省| 田阳县| 清徐县| 南部县| 琼中| 罗城| 永年县| 乐清市| 梅州市| 肃宁县|