找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Method of Fractional Steps; The Solution of Prob N. N. Yanenko,Maurice Holt Book 1971 Springer-Verlag, Berlin · Heidelberg 1971 Mathema

[復(fù)制鏈接]
查看: 37644|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:51:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Method of Fractional Steps
副標(biāo)題The Solution of Prob
編輯N. N. Yanenko,Maurice Holt
視頻videohttp://file.papertrans.cn/915/914018/914018.mp4
圖書封面Titlebook: The Method of Fractional Steps; The Solution of Prob N. N. Yanenko,Maurice Holt Book 1971 Springer-Verlag, Berlin · Heidelberg 1971 Mathema
描述The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound- aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale com
出版日期Book 1971
關(guān)鍵詞Mathematische Physik; Potential; Variables; finite element method; mathematical physics
版次1
doihttps://doi.org/10.1007/978-3-642-65108-3
isbn_softcover978-3-642-65110-6
isbn_ebook978-3-642-65108-3
copyrightSpringer-Verlag, Berlin · Heidelberg 1971
The information of publication is updating

書目名稱The Method of Fractional Steps影響因子(影響力)




書目名稱The Method of Fractional Steps影響因子(影響力)學(xué)科排名




書目名稱The Method of Fractional Steps網(wǎng)絡(luò)公開度




書目名稱The Method of Fractional Steps網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Method of Fractional Steps被引頻次




書目名稱The Method of Fractional Steps被引頻次學(xué)科排名




書目名稱The Method of Fractional Steps年度引用




書目名稱The Method of Fractional Steps年度引用學(xué)科排名




書目名稱The Method of Fractional Steps讀者反饋




書目名稱The Method of Fractional Steps讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:23:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:43:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:16:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:56:55 | 只看該作者
Book 1971ors, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound- aries and to viscous flow at low sp
7#
發(fā)表于 2025-3-22 20:12:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:50 | 只看該作者
10#
發(fā)表于 2025-3-23 06:39:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 丹巴县| 穆棱市| 广水市| 元阳县| 苏州市| 寻甸| 延安市| 五原县| 大荔县| 工布江达县| 秦皇岛市| 瓦房店市| 蓬安县| 兴山县| 新安县| 鹤岗市| 饶河县| 井研县| 光山县| 伊金霍洛旗| 儋州市| 万载县| 朝阳区| 茂名市| 海门市| 武鸣县| 海安县| 重庆市| 常州市| 格尔木市| 舞钢市| 鲜城| 大悟县| 航空| 温州市| 娄底市| 张家川| 如东县| 来安县| 开封县|