找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Local Langlands Conjecture for GL(2); Colin J. Bushnell,Guy Henniart Book 2006 Springer-Verlag Berlin Heidelberg 2006 Local Langlands

[復(fù)制鏈接]
查看: 26491|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:18:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Local Langlands Conjecture for GL(2)
編輯Colin J. Bushnell,Guy Henniart
視頻videohttp://file.papertrans.cn/914/913215/913215.mp4
概述Contributes an unprededented text to the so-called "Langlands theory".An ambitious research program of already 40 years.Masterly exposition by authors who have contributed significantly to the Langlan
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: The Local Langlands Conjecture for GL(2);  Colin J. Bushnell,Guy Henniart Book 2006 Springer-Verlag Berlin Heidelberg 2006 Local Langlands
描述.If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory...This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groupsand the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups..
出版日期Book 2006
關(guān)鍵詞Local Langlands correspondence; Representation theory; Weil group; finite field; functional equation; smo
版次1
doihttps://doi.org/10.1007/3-540-31511-X
isbn_softcover978-3-642-06853-9
isbn_ebook978-3-540-31511-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱The Local Langlands Conjecture for GL(2)影響因子(影響力)




書目名稱The Local Langlands Conjecture for GL(2)影響因子(影響力)學(xué)科排名




書目名稱The Local Langlands Conjecture for GL(2)網(wǎng)絡(luò)公開度




書目名稱The Local Langlands Conjecture for GL(2)網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Local Langlands Conjecture for GL(2)被引頻次




書目名稱The Local Langlands Conjecture for GL(2)被引頻次學(xué)科排名




書目名稱The Local Langlands Conjecture for GL(2)年度引用




書目名稱The Local Langlands Conjecture for GL(2)年度引用學(xué)科排名




書目名稱The Local Langlands Conjecture for GL(2)讀者反饋




書目名稱The Local Langlands Conjecture for GL(2)讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:52 | 只看該作者
https://doi.org/10.1007/3-540-31511-XLocal Langlands correspondence; Representation theory; Weil group; finite field; functional equation; smo
地板
發(fā)表于 2025-3-22 05:38:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:31:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:24:48 | 只看該作者
0072-7830 by authors who have contributed significantly to the Langlan.If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive int
7#
發(fā)表于 2025-3-22 17:03:52 | 只看該作者
Book 2006ative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates
8#
發(fā)表于 2025-3-22 23:09:41 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:01 | 只看該作者
10#
發(fā)表于 2025-3-23 08:51:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁县| 亳州市| 大新县| 桂阳县| 青河县| 肃南| 闽清县| 绥阳县| 宁津县| 青海省| 江安县| 安塞县| 锦州市| 新密市| 敦煌市| 吉木萨尔县| 东宁县| 宁海县| 古田县| 会昌县| 克东县| 望奎县| 南皮县| 石林| 临夏市| 永康市| 房产| 岳池县| 江都市| 庆阳市| 中方县| 乌鲁木齐县| 晋宁县| 青阳县| 黑水县| 南陵县| 会昌县| 广丰县| 小金县| 夏河县| 邢台市|