找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Kolmogorov-Obukhov Theory of Turbulence; A Mathematical Theor Bjorn Birnir Book 2013 Bj?rn Birnir 2013 Brownian Motion.Generalized Hype

[復(fù)制鏈接]
查看: 53806|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:33:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Kolmogorov-Obukhov Theory of Turbulence
副標(biāo)題A Mathematical Theor
編輯Bjorn Birnir
視頻videohttp://file.papertrans.cn/913/912652/912652.mp4
概述This book presents the first mathematical theory of fully-developed turbulence.Shows the stochastic Navier-Stokes Equation is the appropriate model and the statistical theory of this equation is devel
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: The Kolmogorov-Obukhov Theory of Turbulence; A Mathematical Theor Bjorn Birnir Book 2013 Bj?rn Birnir 2013 Brownian Motion.Generalized Hype
描述???????Turbulence is a major problem facing modern societies. It makes airline passengers return to their seats and fasten their seatbelts but it also creates drag on the aircraft that causes it to use more fuel and create more pollution. The same applies to cars, ships and the space shuttle. The mathematical theory of turbulence has been an unsolved problems for 500 years and the development of the statistical theory of the Navier-Stokes equations describes turbulent flow has been an open problem. The Kolmogorov-Obukhov Theory of Turbulence develops a statistical theory of turbulence from the stochastic Navier-Stokes equation and the physical theory, that was proposed by Kolmogorov and Obukhov in 1941. The statistical theory of turbulence shows that the noise in developed turbulence is a general form which can be used to present a mathematical model for the stochastic Navier-Stokes equation. The statistical theory of the stochastic Navier-Stokes equation is developed in a pedagogical manner and shown to imply the Kolmogorov-Obukhov statistical theory. This book looks at a new mathematical theory in turbulence which may lead to many new developments in vorticity and Lagrangian turb
出版日期Book 2013
關(guān)鍵詞Brownian Motion; Generalized Hyperbolic Distributions; Inertial Range; Kolmogorov- Obukov Scaling; Navie
版次1
doihttps://doi.org/10.1007/978-1-4614-6262-0
isbn_softcover978-1-4614-6261-3
isbn_ebook978-1-4614-6262-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightBj?rn Birnir 2013
The information of publication is updating

書目名稱The Kolmogorov-Obukhov Theory of Turbulence影響因子(影響力)




書目名稱The Kolmogorov-Obukhov Theory of Turbulence影響因子(影響力)學(xué)科排名




書目名稱The Kolmogorov-Obukhov Theory of Turbulence網(wǎng)絡(luò)公開度




書目名稱The Kolmogorov-Obukhov Theory of Turbulence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Kolmogorov-Obukhov Theory of Turbulence被引頻次




書目名稱The Kolmogorov-Obukhov Theory of Turbulence被引頻次學(xué)科排名




書目名稱The Kolmogorov-Obukhov Theory of Turbulence年度引用




書目名稱The Kolmogorov-Obukhov Theory of Turbulence年度引用學(xué)科排名




書目名稱The Kolmogorov-Obukhov Theory of Turbulence讀者反饋




書目名稱The Kolmogorov-Obukhov Theory of Turbulence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:19:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:08:24 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:19 | 只看該作者
6#
發(fā)表于 2025-3-22 13:59:07 | 只看該作者
https://doi.org/10.1007/978-1-4614-6262-0Brownian Motion; Generalized Hyperbolic Distributions; Inertial Range; Kolmogorov- Obukov Scaling; Navie
7#
發(fā)表于 2025-3-22 20:51:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:07:05 | 只看該作者
Bjorn BirnirThis book presents the first mathematical theory of fully-developed turbulence.Shows the stochastic Navier-Stokes Equation is the appropriate model and the statistical theory of this equation is devel
9#
發(fā)表于 2025-3-23 01:56:27 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:28:30 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 镇宁| 洱源县| 尉氏县| 城固县| 东乡县| 横峰县| 铁岭县| 土默特右旗| 朝阳县| 油尖旺区| 湖北省| 榆树市| 黄大仙区| 安多县| 石台县| 乐平市| 鹤山市| 文安县| 出国| 故城县| 西贡区| 明水县| 肇庆市| 图片| 贵阳市| 泾源县| 神农架林区| 介休市| 江安县| 扎鲁特旗| 大姚县| 渝北区| 当雄县| 台中县| 曲水县| 紫阳县| 东兴市| 红安县| 扶绥县| 怀仁县|