找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Hopf Bifurcation and Its Applications; J. E. Marsden,M. McCracken Book 1976 Springer-Verlag New York Inc. 1976 Bifurcation.Calculation

[復(fù)制鏈接]
查看: 47557|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:24:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Hopf Bifurcation and Its Applications
編輯J. E. Marsden,M. McCracken
視頻videohttp://file.papertrans.cn/912/911412/911412.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: The Hopf Bifurcation and Its Applications;  J. E. Marsden,M. McCracken Book 1976 Springer-Verlag New York Inc. 1976 Bifurcation.Calculation
描述The goal of these notes is to give a reasonahly com- plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe- cific problems, including stability calculations. Historical- ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf‘s basic paper [1] appeared in 1942. Although the term "Poincare- Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf‘s crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle- Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1].
出版日期Book 1976
關(guān)鍵詞Bifurcation; Calculation; Invariant; Manifold; Morphism; dynamical systems; equation; proof; theorem; matrix
版次1
doihttps://doi.org/10.1007/978-1-4612-6374-6
isbn_softcover978-0-387-90200-5
isbn_ebook978-1-4612-6374-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York Inc. 1976
The information of publication is updating

書目名稱The Hopf Bifurcation and Its Applications影響因子(影響力)




書目名稱The Hopf Bifurcation and Its Applications影響因子(影響力)學(xué)科排名




書目名稱The Hopf Bifurcation and Its Applications網(wǎng)絡(luò)公開(kāi)度




書目名稱The Hopf Bifurcation and Its Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱The Hopf Bifurcation and Its Applications被引頻次




書目名稱The Hopf Bifurcation and Its Applications被引頻次學(xué)科排名




書目名稱The Hopf Bifurcation and Its Applications年度引用




書目名稱The Hopf Bifurcation and Its Applications年度引用學(xué)科排名




書目名稱The Hopf Bifurcation and Its Applications讀者反饋




書目名稱The Hopf Bifurcation and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:57 | 只看該作者
0066-5452 bifurcation with applications to spe- cific problems, including stability calculations. Historical- ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf‘s basic paper [1] appear
板凳
發(fā)表于 2025-3-22 03:17:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:29 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:15 | 只看該作者
978-0-387-90200-5Springer-Verlag New York Inc. 1976
6#
發(fā)表于 2025-3-22 14:15:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:28:42 | 只看該作者
Book 1976eral parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1].
8#
發(fā)表于 2025-3-22 23:33:58 | 只看該作者
9#
發(fā)表于 2025-3-23 04:02:38 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:42:30 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 博罗县| 罗源县| 含山县| 沁阳市| 福泉市| 临西县| 磐安县| 黑河市| 安新县| 庄浪县| 舟曲县| 彭阳县| 聂拉木县| 乐东| 荥经县| 福安市| 文安县| 军事| 织金县| 芜湖市| 尉犁县| 铜梁县| 北票市| 中卫市| 丹东市| 绥阳县| 买车| 南和县| 大丰市| 修文县| 庆城县| 闸北区| 高阳县| 大同县| 府谷县| 班戈县| 曲水县| 榆林市| 平凉市| 宁蒗|