找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Gradient Discretisation Method; Jér?me Droniou,Robert Eymard,Raphaèle Herbin Textbook 2018 Springer International Publishing AG, part

[復(fù)制鏈接]
查看: 46486|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:56:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The Gradient Discretisation Method
編輯Jér?me Droniou,Robert Eymard,Raphaèle Herbin
視頻videohttp://file.papertrans.cn/911/910820/910820.mp4
概述Includes a complete convergence analysis of schemes for linear and non-linear PDEs, covering all standard boundary conditions for elliptic and parabolic models.Presents a unified analysis of many clas
叢書(shū)名稱Mathématiques et Applications
圖書(shū)封面Titlebook: The Gradient Discretisation Method;  Jér?me Droniou,Robert Eymard,Raphaèle Herbin Textbook 2018 Springer International Publishing AG, part
描述.This monograph presents? the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes..
出版日期Textbook 2018
關(guān)鍵詞Gradient Discretisation Method; Gradient schemes; Elliptic partial differential equations; Parabolic pa
版次1
doihttps://doi.org/10.1007/978-3-319-79042-8
isbn_softcover978-3-319-79041-1
isbn_ebook978-3-319-79042-8Series ISSN 1154-483X Series E-ISSN 2198-3275
issn_series 1154-483X
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書(shū)目名稱The Gradient Discretisation Method影響因子(影響力)




書(shū)目名稱The Gradient Discretisation Method影響因子(影響力)學(xué)科排名




書(shū)目名稱The Gradient Discretisation Method網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The Gradient Discretisation Method網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The Gradient Discretisation Method被引頻次




書(shū)目名稱The Gradient Discretisation Method被引頻次學(xué)科排名




書(shū)目名稱The Gradient Discretisation Method年度引用




書(shū)目名稱The Gradient Discretisation Method年度引用學(xué)科排名




書(shū)目名稱The Gradient Discretisation Method讀者反饋




書(shū)目名稱The Gradient Discretisation Method讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:32 | 只看該作者
1154-483X nd parabolic models.Presents a unified analysis of many clas.This monograph presents? the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover bot
板凳
發(fā)表于 2025-3-22 00:27:26 | 只看該作者
地板
發(fā)表于 2025-3-22 07:38:56 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:49:16 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:40 | 只看該作者
Mathématiques et Applicationshttp://image.papertrans.cn/t/image/910820.jpg
8#
發(fā)表于 2025-3-23 00:34:00 | 只看該作者
https://doi.org/10.1007/978-3-319-79042-8Gradient Discretisation Method; Gradient schemes; Elliptic partial differential equations; Parabolic pa
9#
發(fā)表于 2025-3-23 02:13:27 | 只看該作者
Jér?me Droniou,Robert Eymard,Raphaèle HerbinIncludes a complete convergence analysis of schemes for linear and non-linear PDEs, covering all standard boundary conditions for elliptic and parabolic models.Presents a unified analysis of many clas
10#
發(fā)表于 2025-3-23 08:25:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵石县| 行唐县| 梓潼县| 湖州市| 安泽县| 凤台县| 攀枝花市| 南开区| 陵川县| 宿迁市| 淮北市| 遂平县| 大埔县| 卢氏县| 汝州市| 广元市| 苏尼特左旗| 永吉县| 平罗县| 峨边| 平塘县| 山东省| 克什克腾旗| 湟源县| 广宁县| 长岭县| 封开县| 定日县| 阿尔山市| 自治县| 扶沟县| 乐亭县| 开平市| 宜兰市| 长宁区| 揭西县| 沂水县| 白玉县| 武定县| 会理县| 湖北省|