找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Geometry of Ordinary Variational Equations; Olga Krupková Book 1997 Springer-Verlag Berlin Heidelberg 1997 Hamilton-Jacobi theory.Hami

[復(fù)制鏈接]
查看: 8356|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:02:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations
編輯Olga Krupková
視頻videohttp://file.papertrans.cn/911/910539/910539.mp4
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: The Geometry of Ordinary Variational Equations;  Olga Krupková Book 1997 Springer-Verlag Berlin Heidelberg 1997 Hamilton-Jacobi theory.Hami
描述The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
出版日期Book 1997
關(guān)鍵詞Hamilton-Jacobi theory; Hamiltonian mechanics; Lagrangian mechanics; calculus; differential equation; dif
版次1
doihttps://doi.org/10.1007/BFb0093438
isbn_softcover978-3-540-63832-2
isbn_ebook978-3-540-69657-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations影響因子(影響力)




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations被引頻次




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations年度引用




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations讀者反饋




書(shū)目名稱(chēng)The Geometry of Ordinary Variational Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:08:37 | 只看該作者
Book 1997build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
地板
發(fā)表于 2025-3-22 08:34:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:11:47 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/t/image/910539.jpg
6#
發(fā)表于 2025-3-22 16:08:31 | 只看該作者
7#
發(fā)表于 2025-3-22 21:00:32 | 只看該作者
8#
發(fā)表于 2025-3-22 23:12:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:15 | 只看該作者
Implementation and Practical Study,off with high accuracy. However, the study detected major differences between the processes used to generate runoff within the models and those in the field. This raises questions about the general reliability of these techniques.
10#
發(fā)表于 2025-3-23 08:12:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭阳市| 屯昌县| 镇坪县| 崇阳县| 乌拉特前旗| 临桂县| 璧山县| 太白县| 普宁市| 合江县| 安岳县| 金堂县| 龙岩市| 襄垣县| 荥经县| 花莲县| 晋江市| 义马市| 衡阳县| 澎湖县| 怀柔区| 余庆县| 甘南县| 枣阳市| 招远市| 惠水县| 沾化县| 天全县| 雷山县| 康平县| 高雄县| 府谷县| 汤原县| 江都市| 阿勒泰市| 西畴县| 资溪县| 汝阳县| 班戈县| 丹凤县| 南雄市|