找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Geometry of Hamilton and Lagrange Spaces; Radu Miron,Dragos Hrimiuc,Sorin V. Sabau Book 2002 Springer Science+Business Media B.V. 2002

[復(fù)制鏈接]
查看: 47441|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:45:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Geometry of Hamilton and Lagrange Spaces
編輯Radu Miron,Dragos Hrimiuc,Sorin V. Sabau
視頻videohttp://file.papertrans.cn/911/910528/910528.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: The Geometry of Hamilton and Lagrange Spaces;  Radu Miron,Dragos Hrimiuc,Sorin V. Sabau Book 2002 Springer Science+Business Media B.V. 2002
描述The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagr
出版日期Book 2002
關(guān)鍵詞differential geometry; manifold; optimal control; transformation
版次1
doihttps://doi.org/10.1007/0-306-47135-3
isbn_softcover978-1-4020-0352-3
isbn_ebook978-0-306-47135-3Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media B.V. 2002
The information of publication is updating

書目名稱The Geometry of Hamilton and Lagrange Spaces影響因子(影響力)




書目名稱The Geometry of Hamilton and Lagrange Spaces影響因子(影響力)學(xué)科排名




書目名稱The Geometry of Hamilton and Lagrange Spaces網(wǎng)絡(luò)公開度




書目名稱The Geometry of Hamilton and Lagrange Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Geometry of Hamilton and Lagrange Spaces被引頻次




書目名稱The Geometry of Hamilton and Lagrange Spaces被引頻次學(xué)科排名




書目名稱The Geometry of Hamilton and Lagrange Spaces年度引用




書目名稱The Geometry of Hamilton and Lagrange Spaces年度引用學(xué)科排名




書目名稱The Geometry of Hamilton and Lagrange Spaces讀者反饋




書目名稱The Geometry of Hamilton and Lagrange Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:11 | 只看該作者
Fundamental Theories of Physicshttp://image.papertrans.cn/t/image/910528.jpg
地板
發(fā)表于 2025-3-22 05:10:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:55 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:20 | 只看該作者
0168-1222 nection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagr978-1-4020-0352-3978-0-306-47135-3Series ISSN 0168-1222 Series E-ISSN 2365-6425
7#
發(fā)表于 2025-3-22 19:40:27 | 只看該作者
8#
發(fā)表于 2025-3-22 23:45:56 | 只看該作者
9#
發(fā)表于 2025-3-23 03:25:13 | 只看該作者
Ablaufsimulation in der Automobilindustrieu’ll evaluate three options for reducing CO. emissions at the state level: investing in residential energy efficiency, building solar photovoltaic (PV) farms. and reforesting available lands. Your chosen solution should aim for a 35% reduction in CO. emissions by 2030.
10#
發(fā)表于 2025-3-23 06:03:47 | 只看該作者
Arbeitstechniken und technische Anforderungen an die Herstellung pharmazeutisch biotechnologischer Peit seines Produktes nachweisen k?nnen. Zum einen ist er durch unterschiedliche nationale und internationale Gesetze verpflichtet, auf der anderen Seite sind technische Voraussetzung überhaupt einzuhalten, um diesem Anspruch gerecht zu werden. Als wesentlich für die gesamte Entwicklung von der frühe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 万源市| 汉阴县| 东山县| 贵阳市| 门源| 金寨县| 金堂县| 萨嘎县| 恩平市| 鄂州市| 宜阳县| 德阳市| 丰原市| 子洲县| 南江县| 平湖市| 通辽市| 锡林浩特市| 且末县| 武宣县| 平顶山市| 饶河县| 革吉县| 林口县| 库尔勒市| 蚌埠市| 达日县| 全州县| 包头市| 云安县| 凌海市| 贵德县| 宁波市| 绵阳市| 镇坪县| 红原县| 安塞县| 凤山市| 石景山区| 汪清县|