找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Geometry of Discrete Groups; Alan F. Beardon Textbook 1983 Springer-Verlag Berlin Heidelberg 1983 Finite.Geometry.Groups.Riemann surfa

[復(fù)制鏈接]
查看: 16982|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:59:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The Geometry of Discrete Groups
編輯Alan F. Beardon
視頻videohttp://file.papertrans.cn/911/910524/910524.mp4
叢書(shū)名稱Graduate Texts in Mathematics
圖書(shū)封面Titlebook: The Geometry of Discrete Groups;  Alan F. Beardon Textbook 1983 Springer-Verlag Berlin Heidelberg 1983 Finite.Geometry.Groups.Riemann surfa
描述This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo- metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana- tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publication
出版日期Textbook 1983
關(guān)鍵詞Finite; Geometry; Groups; Riemann surface; complex analysis; constraint; form; hyperbolic geometry; matrices
版次1
doihttps://doi.org/10.1007/978-1-4612-1146-4
isbn_softcover978-1-4612-7022-5
isbn_ebook978-1-4612-1146-4Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag Berlin Heidelberg 1983
The information of publication is updating

書(shū)目名稱The Geometry of Discrete Groups影響因子(影響力)




書(shū)目名稱The Geometry of Discrete Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱The Geometry of Discrete Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The Geometry of Discrete Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The Geometry of Discrete Groups被引頻次




書(shū)目名稱The Geometry of Discrete Groups被引頻次學(xué)科排名




書(shū)目名稱The Geometry of Discrete Groups年度引用




書(shū)目名稱The Geometry of Discrete Groups年度引用學(xué)科排名




書(shū)目名稱The Geometry of Discrete Groups讀者反饋




書(shū)目名稱The Geometry of Discrete Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:11:44 | 只看該作者
Textbook 1983ow been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manusc
地板
發(fā)表于 2025-3-22 06:46:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:42:05 | 只看該作者
978-1-4612-7022-5Springer-Verlag Berlin Heidelberg 1983
6#
發(fā)表于 2025-3-22 16:22:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:42:08 | 只看該作者
8#
發(fā)表于 2025-3-22 23:11:15 | 只看該作者
https://doi.org/10.1007/978-1-4612-1146-4Finite; Geometry; Groups; Riemann surface; complex analysis; constraint; form; hyperbolic geometry; matrices
9#
發(fā)表于 2025-3-23 04:38:26 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:27:30 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳林县| 全椒县| 高州市| 聊城市| 固镇县| 临城县| 清镇市| 鹿泉市| 曲周县| 安龙县| 威远县| 临泉县| 修文县| 黔西县| 邳州市| 比如县| 文成县| 灵台县| 海阳市| 台南县| 西林县| 和硕县| 新绛县| 鄄城县| 瑞昌市| 曲松县| 同德县| 利川市| 谢通门县| 海阳市| 阳谷县| 泗水县| 云阳县| 三江| 卢龙县| 水富县| 宽城| 齐齐哈尔市| 嘉禾县| 巴楚县| 平凉市|