找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity; Paul Ramond Book 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
查看: 30734|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:40:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity
編輯Paul Ramond
視頻videohttp://file.papertrans.cn/910/909766/909766.mp4
概述Nominated as an outstanding PhD thesis by the Université PSL and Observatiore de Paris.Includes a review of Isochrony in physics and a complete solution of Henon‘s isochrone problem.Provides new exten
叢書(shū)名稱Springer Theses
圖書(shū)封面Titlebook: The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity;  Paul Ramond Book 2023 The Editor(s) (if applicab
描述.The thesis tackles two distinct problems of great interest in gravitational mechanics — one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles.?.The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely ina geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits.?.The thesis is exceptional in the breadth of its scope and achievements. It
出版日期Book 2023
關(guān)鍵詞Isochrony in physics; Henon‘s isochrone problem; Gravitational wave physics; General Relativity; Two-bod
版次1
doihttps://doi.org/10.1007/978-3-031-17964-8
isbn_softcover978-3-031-17966-2
isbn_ebook978-3-031-17964-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity影響因子(影響力)




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity影響因子(影響力)學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity被引頻次




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity被引頻次學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity年度引用




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity年度引用學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity讀者反饋




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:20 | 只看該作者
第109766主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:54:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:28:34 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:52:13 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:35:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:41:02 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:06:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:40:35 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:20:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 12:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 平塘县| 房山区| 进贤县| 洛宁县| 合山市| 乌恰县| 嘉兴市| 旌德县| 桃园县| 义乌市| 勃利县| 偃师市| 察哈| 西丰县| 松滋市| 浙江省| 融水| 吉林省| 新竹县| 镇远县| 景谷| 江陵县| 东兰县| 新沂市| 英山县| 和田市| 布尔津县| 遂平县| 金乡县| 岢岚县| 荃湾区| 石嘴山市| 定日县| 龙江县| 山丹县| 武乡县| 诸暨市| 盐亭县| 涿鹿县| 邵阳县|