找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence; A Primer John Toland Book 2020 The Author(s), under exclusive licen

[復(fù)制鏈接]
查看: 52007|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:00:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence
副標題A Primer
編輯John Toland
視頻videohttp://file.papertrans.cn/908/907804/907804.mp4
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence; A Primer John Toland Book 2020 The Author(s), under exclusive licen
描述.In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space .L.p.(X,L,λ)*with .L.q.(X,L,λ), where 1/p+1/q=1, as long as 1 ≤ p<∞. However, .L.∞.(X,L,λ)* cannot be similarly described, and is instead represented as a class of finitely additive measures..This book provides a reasonably elementary account of the representation theory of .L.∞.(X,L,λ)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in .L.∞.(X,L,λ) to be weakly convergent, applicable in the one-point compactification of X, is given..With a clear summary ofprerequisites, and illustrated by examples including .L.∞.(.R.n.) and the sequence space .l.∞., this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences..
出版日期Book 2020
關(guān)鍵詞Riesz Representation; Finitely additive measures; Weak convergence; Yosida-Hewitt; Essential range; Extre
版次1
doihttps://doi.org/10.1007/978-3-030-34732-1
isbn_softcover978-3-030-34731-4
isbn_ebook978-3-030-34732-1Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence影響因子(影響力)




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence影響因子(影響力)學科排名




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence網(wǎng)絡(luò)公開度




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence網(wǎng)絡(luò)公開度學科排名




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence被引頻次




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence被引頻次學科排名




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence年度引用




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence年度引用學科排名




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence讀者反饋




書目名稱The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:17 | 只看該作者
第107804主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:29:05 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:16:54 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:48:25 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:07:31 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:42:55 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:31:12 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:18:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉禾县| 沂南县| 黄大仙区| 阳谷县| 固阳县| 五莲县| 临泽县| 舟曲县| 玉门市| 嘉峪关市| 务川| 楚雄市| 闽清县| 嵊泗县| 任丘市| 柳林县| 博野县| 保山市| 桦川县| 绥阳县| 铁岭市| 同仁县| 荔波县| 扎鲁特旗| 望城县| 库车县| 阿拉善左旗| 临夏县| 合水县| 额敏县| 曲靖市| 宁陕县| 手游| 四平市| 五寨县| 安图县| 清水河县| 奎屯市| 宁蒗| 镇康县| 小金县|