找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups; Daciberg Lima Goncalves,John Guaschi Book 2013 John Guasc

[復(fù)制鏈接]
查看: 39564|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:58:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups
編輯Daciberg Lima Goncalves,John Guaschi
視頻videohttp://file.papertrans.cn/907/906247/906247.mp4
概述Includes supplementary material:
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups;  Daciberg Lima Goncalves,John Guaschi Book 2013 John Guasc
描述This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group rings. The classification itself is somewhat intricate, due to the rich structure of the finite subgroups of these braid groups, and is achieved by an in-depth analysis of their group-theoretical and topological properties, such as their centralisers, normalisers and cohomological periodicity. Another important aspect of our work is the close relationship of the braid groups with mapping class groups. This manuscript will serve as a reference for the study of braid groups of low-genus surfaces, and isaddressed to graduate students and researchers in low-dimensional, geometric and algebraic topology and in algebra. ?
出版日期Book 2013
關(guān)鍵詞20F36,20E07,20F50,55R80,55Q52; Configuration space; Mapping class group; Sphere braid groups; Virtually
版次1
doihttps://doi.org/10.1007/978-3-319-00257-6
isbn_softcover978-3-319-00256-9
isbn_ebook978-3-319-00257-6Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightJohn Guaschi 2013
The information of publication is updating

書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups影響因子(影響力)




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups影響因子(影響力)學(xué)科排名




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups網(wǎng)絡(luò)公開度




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups被引頻次




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups被引頻次學(xué)科排名




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups年度引用




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups年度引用學(xué)科排名




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups讀者反饋




書目名稱The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:41 | 只看該作者
第106247主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:49 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:44:18 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:07:20 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:41:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:46:36 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:26:44 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:27:56 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:40:49 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 运城市| 佛冈县| 南丰县| 神木县| 长兴县| 北票市| 新竹市| 正蓝旗| 周至县| 右玉县| 红河县| 慈溪市| 鹤岗市| 苍溪县| 甘南县| 广饶县| 子洲县| 越西县| 乐东| 开远市| 基隆市| 阳西县| 新巴尔虎右旗| 八宿县| 灌云县| 南阳市| 新源县| 营口市| 南康市| 马边| 阿鲁科尔沁旗| 龙岩市| 宾阳县| 微博| 靖江市| 桂林市| 高台县| 桓台县| 绩溪县| 文登市|