找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Bochner Integral; Jan Mikusiński Book 1978 Springer Basel AG 1978 Bochner integral.Integral.integration theory

[復制鏈接]
查看: 13284|回復: 35
樓主
發(fā)表于 2025-3-21 16:43:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Bochner Integral
編輯Jan Mikusiński
視頻videohttp://file.papertrans.cn/906/905311/905311.mp4
叢書名稱Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften
圖書封面Titlebook: The Bochner Integral;  Jan Mikusiński Book 1978 Springer Basel AG 1978 Bochner integral.Integral.integration theory
描述The theory of the Lebesgue integral is still considered as a difficult theory, no matter whether it is based the concept of measure or introduced by other methods. The primary aim of this book is to give an approach which would be as intelligible and lucid as possible. Our definition, produced in Chapter I, requires for its background only a little of the theory of absolutely convergent series so that it is understandable for students of the first undergraduate course. Nevertheless, it yields the Lebesgue integral in its full generality and, moreover, extends automatically to the Bochner integral (by replacing real coefficients of series by elements of a Banach space). It seems that our approach is simple enough as to eliminate the less useful Riemann integration theory from regular mathematics courses. Intuitively, the difference between various approaches to integration may be brought out by the following story on shoemakers. A piece of leather, like in Figure 1, is given. The task consists in measuring its area. There are three shoemakers and each of them solves the task in his own way. A B Fig. 1 The shoemaker R. divides the leather into a finite number of vertical strips and c
出版日期Book 1978
關(guān)鍵詞Bochner integral; Integral; integration theory
版次1
doihttps://doi.org/10.1007/978-3-0348-5567-9
isbn_softcover978-3-0348-5569-3
isbn_ebook978-3-0348-5567-9
copyrightSpringer Basel AG 1978
The information of publication is updating

書目名稱The Bochner Integral影響因子(影響力)




書目名稱The Bochner Integral影響因子(影響力)學科排名




書目名稱The Bochner Integral網(wǎng)絡公開度




書目名稱The Bochner Integral網(wǎng)絡公開度學科排名




書目名稱The Bochner Integral被引頻次




書目名稱The Bochner Integral被引頻次學科排名




書目名稱The Bochner Integral年度引用




書目名稱The Bochner Integral年度引用學科排名




書目名稱The Bochner Integral讀者反饋




書目名稱The Bochner Integral讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:15:06 | 只看該作者
第105311主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:54:01 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:45:07 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:45:13 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:45:21 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:13:36 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:54:49 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:23:28 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:18:33 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
梨树县| 徐水县| 沾益县| 德清县| 宜城市| 大同县| 昆山市| 抚州市| 济南市| 宝丰县| 凉山| 牡丹江市| 高阳县| 双城市| 临颍县| 三明市| 南召县| 息烽县| 佛坪县| 唐河县| 亳州市| 永城市| 济宁市| 乐都县| 仪征市| 象州县| 太白县| 三门峡市| 襄汾县| 江源县| 平泉县| 奇台县| 西城区| 泸水县| 博湖县| 靖州| 大余县| 凌源市| 星子县| 朝阳县| 青田县|