找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Beltrami Equation; A Geometric Approach Vladimir Gutlyanskii,Vladimir Ryazanov,Eduard Yaku Book 2012 Springer Science+Business Media, L

[復(fù)制鏈接]
查看: 34721|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:59:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Beltrami Equation
副標(biāo)題A Geometric Approach
編輯Vladimir Gutlyanskii,Vladimir Ryazanov,Eduard Yaku
視頻videohttp://file.papertrans.cn/906/905041/905041.mp4
概述Features a unified geometric approach based on the modulus method that is effectively applied to solving the Beltrami equation problems.Presents recent developments in the theory of Beltrami equations
叢書名稱Developments in Mathematics
圖書封面Titlebook: The Beltrami Equation; A Geometric Approach Vladimir Gutlyanskii,Vladimir Ryazanov,Eduard Yaku Book 2012 Springer Science+Business Media, L
描述.This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmuller spaces, Clifford analysis,? meromorphic functions, low dimensional topology, holomorphic motions, complex dynamics,? potential theory, electrostatics, magnetostatics,? hydrodynamics and magneto-hydrodynamics..The purpose of this book is to present the recent developments in the theory of Beltrami equations; especially?those concerning degenerate and alternating Beltrami equations. The authors study a wide circle of problems like convergence, existence, uniqueness, representation, removal of singularities, local distortion estimates and boundary behavior?of solutions to the Beltrami equations. The monograph?contains a number of new types of criteria in the given problems, particularly new integral conditions for the existence of regular solutions? to the Beltrami equations that turned out to be not only sufficient but also necessary..The most important feature of this book?concerns the unified? geometric approach based on the modulus method t
出版日期Book 2012
關(guān)鍵詞Beltrami equation; ordinary differential equations; partial differential equations
版次1
doihttps://doi.org/10.1007/978-1-4614-3191-6
isbn_softcover978-1-4899-9302-1
isbn_ebook978-1-4614-3191-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱The Beltrami Equation影響因子(影響力)




書目名稱The Beltrami Equation影響因子(影響力)學(xué)科排名




書目名稱The Beltrami Equation網(wǎng)絡(luò)公開度




書目名稱The Beltrami Equation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Beltrami Equation被引頻次




書目名稱The Beltrami Equation被引頻次學(xué)科排名




書目名稱The Beltrami Equation年度引用




書目名稱The Beltrami Equation年度引用學(xué)科排名




書目名稱The Beltrami Equation讀者反饋




書目名稱The Beltrami Equation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:48 | 只看該作者
第105041主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:28:33 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:59:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:06:19 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:29:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:57:54 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:54:19 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:35:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:03:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵川县| 巴南区| 新田县| 锦屏县| 玉门市| 隆昌县| 福泉市| 崇仁县| 洪洞县| 汝城县| 临西县| 云梦县| 榆中县| 浙江省| 巨野县| 中山市| 嘉禾县| 深圳市| 蕲春县| 应城市| 新民市| 余姚市| 胶南市| 孝昌县| 锦州市| 巴中市| 蒙自县| 绥中县| 军事| 彭阳县| 兴安县| 新巴尔虎左旗| 正阳县| 磐石市| 咸阳市| 新余市| 高陵县| 临邑县| 泾阳县| 太谷县| 云梦县|