找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains; Todd Hester Book 2013 Springer International

[復(fù)制鏈接]
查看: 32638|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:36:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
編輯Todd Hester
視頻videohttp://file.papertrans.cn/901/900088/900088.mp4
概述Latest research on Temporal Difference Reinforcement Learning for Robots.Focuses on applying Reinforcement Learning to real-world problems, particularly learning on robots.Presents the model-based Rei
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains;  Todd Hester Book 2013 Springer International
描述.This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time..Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these
出版日期Book 2013
關(guān)鍵詞Computational Intelligence; Model Based RL; Real-Time Sample Efficient Reinforcement Learning; Reinforc
版次1
doihttps://doi.org/10.1007/978-3-319-01168-4
isbn_softcover978-3-319-37510-6
isbn_ebook978-3-319-01168-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer International Publishing Switzerland 2013
The information of publication is updating

書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains影響因子(影響力)




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains影響因子(影響力)學(xué)科排名




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains網(wǎng)絡(luò)公開度




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains被引頻次




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains被引頻次學(xué)科排名




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains年度引用




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains年度引用學(xué)科排名




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains讀者反饋




書目名稱TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:50 | 只看該作者
第100088主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:08:43 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:36:38 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:44:47 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:26:49 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:55:27 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:26:29 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:46:29 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:44:24 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奈曼旗| 东安县| 岳西县| 天祝| 涞源县| 福建省| 鲁山县| 海丰县| 泸州市| 闸北区| 锡林郭勒盟| 平和县| 张家港市| 七台河市| 宝坻区| 富平县| 宜春市| 南丰县| 和顺县| 绥棱县| 新郑市| 锦屏县| 岑溪市| 抚松县| 璧山县| 康平县| 南丹县| 通榆县| 老河口市| 巴马| 武川县| 新田县| 扶绥县| 辰溪县| 连江县| 清徐县| 花莲县| 堆龙德庆县| 久治县| 察隅县| 高邮市|