找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminaire de Probabilites XXII; Jacques Azéma,Marc Yor,Paul André Meyer Book 1988 Springer-Verlag GmbH Germany, part of Springer Nature 19

[復制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 11:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:51:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:00 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is trgeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing type” (these phenomena can only occur when d≤3), then ..=0 a.s.
14#
發(fā)表于 2025-3-24 01:56:18 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is tr with ..=m, which converges almost surely to a random measure ?., called the statistical equilibrium. We prove here that if the flow is spatially homogeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing ty
15#
發(fā)表于 2025-3-24 02:39:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:20 | 只看該作者
17#
發(fā)表于 2025-3-24 12:57:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:50 | 只看該作者
P. McGill,B. Rajeev,B. V. Raotain approximation sequences in the strong operator topology. The basic observations in this chapter are four theorems (Lemma 2.1, Theorem 2.5, Proposition 2.17, Theorem 2.7) whose proofs are unfortunately rather technical and not very instructive. For that reason we have separated these proofs from
19#
發(fā)表于 2025-3-24 19:54:27 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:52 | 只看該作者
Jacques Azéma,Marc Yor,Paul André Meyerts established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.".978-3-319-70705-1978-3-319-70706-8Series ISSN 2038-5714 Series E-ISSN 2532-3318
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平乡县| 罗山县| 旌德县| 延长县| 平江县| 德保县| 万宁市| 永宁县| 湟源县| 余庆县| 肥东县| 体育| 工布江达县| 永川市| 金溪县| 乌拉特前旗| 江阴市| 望城县| 滦平县| 九寨沟县| 章丘市| 祁门县| 乌鲁木齐市| 迁安市| 罗平县| 香河县| 和田县| 招远市| 彝良县| 三江| 松阳县| 绥芬河市| 东山县| 西宁市| 科技| 连城县| 墨竹工卡县| 南开区| 青州市| 东阳市| 米易县|