找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Séminaire d‘Algèbre Paul Dubreil et Marie-Paule Malliavin; Proceedings Paris 19 Marie-Paule Malliavin Conference proceedings 1985 Springer-

[復(fù)制鏈接]
樓主: 削木頭
11#
發(fā)表于 2025-3-23 12:14:07 | 只看該作者
M. Sweedlerthis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
12#
發(fā)表于 2025-3-23 14:21:35 | 只看該作者
Klaus Bongartzthis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
13#
發(fā)表于 2025-3-23 21:36:35 | 只看該作者
Alain Bouvier,Marco Fontanathis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
14#
發(fā)表于 2025-3-24 00:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:36:38 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:43:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:16 | 只看該作者
,The catenarian property of the polynomial rings over a Prüfer domain,This paper gives complete proofs of the following result: let R be a locally finite dimensional Prüfer domain; then, the polynomial ring R[T.,..,T.] is catenarian for every r?1. The main techniques used in the proof are pull-backs and a function introduced here to measure the extent to which prime ideals in polynomial domains fail to be extended.
19#
發(fā)表于 2025-3-24 19:45:26 | 只看該作者
978-3-540-15686-4Springer-Verlag Berlin Heidelberg 1985
20#
發(fā)表于 2025-3-25 00:05:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白山市| 乌兰浩特市| 大田县| 西峡县| 分宜县| 临安市| 淮南市| 湘乡市| 九江市| 浦城县| 开原市| 资兴市| 孝昌县| 高淳县| 阿坝县| 仙游县| 定襄县| 盖州市| 花莲市| 龙门县| 双峰县| 峡江县| 应城市| 屯昌县| 太仓市| 广河县| 定陶县| 田东县| 陈巴尔虎旗| 太白县| 从化市| 青海省| 嘉祥县| 广平县| 崇义县| 区。| 望都县| 济源市| 武功县| 金乡县| 津南区|