找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Systems for Big Graph Analytics; Da Yan,Yuanyuan Tian,James Cheng Book 2017 The Author(s) 2017 Big graph analytics.Big data.Vertex-centric

[復(fù)制鏈接]
樓主: 卑賤
31#
發(fā)表于 2025-3-27 00:10:09 | 只看該作者
32#
發(fā)表于 2025-3-27 04:03:06 | 只看該作者
Hands-On Experiencesable for educational purposes due to its neat design. Readers only interested in surveying existing big graph analytics systems may safely skip this chapter, while researchers and practitioners who are interested in using Pregel-like system and building their own Big Data systems could benefit from reading this chapter.
33#
發(fā)表于 2025-3-27 05:33:33 | 只看該作者
Shared Memory Abstractiont although the programming interface of these systems simulates a shared memory environment, the underlying execution engine is not shared memory. We focus on introducing the various models implementing shared memory abstraction, and leave readers to explore the system usage by following their respective system websites.
34#
發(fā)表于 2025-3-27 12:41:52 | 只看該作者
Introduction, have witnessed a surging interest in developing big graph analytics systems. Tens of systems have been developed for processing big graphs. Although they enrich the tools available for users to analyze big graphs, it is difficult for beginners of this field to gather up the threads of various syste
35#
發(fā)表于 2025-3-27 15:41:15 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:54 | 只看該作者
37#
發(fā)表于 2025-3-27 23:12:02 | 只看該作者
38#
發(fā)表于 2025-3-28 04:09:57 | 只看該作者
Block-Centric Computationwith a large diameter. This chapter describes a novel block-centric computation model that overcomes the weaknesses of vertex-centric computation, and that significantly speeds up iterative graph computation. We also include a hands-on tutorial on how to get started with Blogel, a state-of-the-art b
39#
發(fā)表于 2025-3-28 09:34:51 | 只看該作者
Subgraph-Centric Graph Miningng, rendering the distributed execution communication-intensive. However, graph mining tasks are often computation-intensive, and cannot be efficiently executed with a data-intensive system. The vertex-centric API is also unsuitable for writing a graph mining algorithm that often checks subgraphs ra
40#
發(fā)表于 2025-3-28 14:08:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙阴县| 新乐市| 文山县| 卢氏县| 观塘区| 古丈县| 菏泽市| 英德市| 磴口县| 山阴县| 阿勒泰市| 安义县| 郎溪县| 纳雍县| 金乡县| 翁牛特旗| 通榆县| 青神县| 牙克石市| 皋兰县| 惠安县| 应用必备| 永登县| 苗栗县| 连城县| 宝丰县| 饶河县| 施秉县| 云林县| 山东省| 岳普湖县| 商丘市| 凉山| 虎林市| 大竹县| 玉田县| 姜堰市| 隆回县| 郎溪县| 右玉县| 巍山|