找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synthetic Data for Deep Learning; Sergey I. Nikolenko Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
樓主: CLIP
31#
發(fā)表于 2025-3-26 20:59:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:17 | 只看該作者
Synthetic Simulated Environments,hat can be used either to generate synthetic datasets on the fly or provide learning environments for reinforcement learning agents. We discuss datasets and simulations for outdoor environments (mostly for autonomous driving), indoor environments, and physics-based simulations for robotics. We also
33#
發(fā)表于 2025-3-27 06:58:59 | 只看該作者
Synthetic Data Outside Computer Vision,ntirely dependent on synthetic data. In this chapter, we survey some of these fields. Specifically, Section?. discusses how structured synthetic data is used for fraud and intrusion detection and other applications in the form of network and/or system logs; in Section?., we consider neural programmi
34#
發(fā)表于 2025-3-27 10:53:46 | 只看該作者
35#
發(fā)表于 2025-3-27 15:40:08 | 只看該作者
Synthetic-to-Real Domain Adaptation and Refinement,r, we give a survey of domain adaptation approaches that have been used for synthetic-to-real adaptation, that is, methods for making models trained on synthetic data work well on real data, which is almost always the end goal. We distinguish two main approaches. In . input synthetic data is modifie
36#
發(fā)表于 2025-3-27 20:57:53 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:47:05 | 只看該作者
Deep Neural Networks for Computer Vision, and new ones appearing up to this day. In this chapter, we discuss the most popular architectures for computer vision, concentrating mainly on ideas rather than specific models. We also discuss the first step towards synthetic data for computer vision: data augmentation.
39#
發(fā)表于 2025-3-28 09:26:21 | 只看該作者
Directions in Synthetic Data Development,c data from real images by cutting and pasting (Section?.), and finally possibilities to produce synthetic data by generative models (Section?.). The latter means generating useful synthetic data from scratch rather than domain adaptation and refinement, which we consider in a separate Chapter?..
40#
發(fā)表于 2025-3-28 12:42:53 | 只看該作者
Privacy Guarantees in Synthetic Data,in this regard can be provided by the framework of differential privacy. We give a brief introduction to differential privacy, its relation to machine learning, and the guarantees that it can provide for synthetic data generation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐齐哈尔市| 花莲县| 汤阴县| 阳山县| 綦江县| 沾益县| 昌乐县| 承德县| 阿图什市| 金门县| 澎湖县| 垦利县| 石河子市| 邢台县| 沅陵县| 仪征市| 通州市| 淮滨县| 商南县| 桐梓县| 金门县| 澄江县| 长宁县| 肇东市| 陕西省| 太原市| 阳春市| 禄丰县| 霍林郭勒市| 苏尼特左旗| 虎林市| 富阳市| 南康市| 定安县| 洪雅县| 屏边| 新蔡县| 二手房| 东城区| 明星| 麻栗坡县|