找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synergies in Analysis, Discrete Mathematics, Soft Computing and Modelling; P. V. Subrahmanyam,V. Antony Vijesh,Prakash Veerar Book 2023 Th

[復(fù)制鏈接]
樓主: hearken
21#
發(fā)表于 2025-3-25 04:59:29 | 只看該作者
Caputo Sequential Fractional Differential Equations with Applications,teger results can be obtained as a special case as . The advantage of using . as a parameter has been illustrated in the graphical numerical results of fractional trigonometric functions, which occurs in the natural phenomena.
22#
發(fā)表于 2025-3-25 07:38:38 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:54:01 | 只看該作者
25#
發(fā)表于 2025-3-25 20:56:31 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:01:45 | 只看該作者
Caputo Sequential Fractional Differential Equations with Applications, .,? with initial conditions. Caputo derivative of order ., used in the dynamic equation is assumed to be sequential of order . such that . The solutions have been expressed in terms of Mittag-Leffler functions and generalized fractional trigonometric functions, whose parameters are ., with . The in
28#
發(fā)表于 2025-3-26 10:43:54 | 只看該作者
,Herscovici’s Conjecture on Product of Some Complete Bipartite Graphs, pebbles from one vertex and adding another pebble to its adjacent vertex. The .-pebbling number of any vertex ., is the minimum number of pebbles required to move . pebbles to the vertex . by moving pebbles in a sequential manner. It is denoted by .. The .-pebbling number, is the minimum number of
29#
發(fā)表于 2025-3-26 12:50:36 | 只看該作者
30#
發(fā)表于 2025-3-26 17:21:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽清县| 汤阴县| 全椒县| 安化县| 武义县| 常熟市| 丹巴县| 衡山县| 天峻县| 扶余县| 辰溪县| 湟中县| 文昌市| 绵阳市| 黔西县| 仪陇县| 会同县| 栾川县| 天长市| 富蕴县| 阳山县| 沂南县| 江源县| 绥阳县| 新巴尔虎左旗| 郓城县| 洛浦县| 安阳县| 庄河市| 宜章县| 鄂托克旗| 会昌县| 左云县| 井研县| 松桃| 东乌| 南和县| 上杭县| 铜梁县| 工布江达县| 武强县|