找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synergies in Analysis, Discrete Mathematics, Soft Computing and Modelling; P. V. Subrahmanyam,V. Antony Vijesh,Prakash Veerar Book 2023 Th

[復(fù)制鏈接]
樓主: hearken
21#
發(fā)表于 2025-3-25 04:59:29 | 只看該作者
Caputo Sequential Fractional Differential Equations with Applications,teger results can be obtained as a special case as . The advantage of using . as a parameter has been illustrated in the graphical numerical results of fractional trigonometric functions, which occurs in the natural phenomena.
22#
發(fā)表于 2025-3-25 07:38:38 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:54:01 | 只看該作者
25#
發(fā)表于 2025-3-25 20:56:31 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:01:45 | 只看該作者
Caputo Sequential Fractional Differential Equations with Applications, .,? with initial conditions. Caputo derivative of order ., used in the dynamic equation is assumed to be sequential of order . such that . The solutions have been expressed in terms of Mittag-Leffler functions and generalized fractional trigonometric functions, whose parameters are ., with . The in
28#
發(fā)表于 2025-3-26 10:43:54 | 只看該作者
,Herscovici’s Conjecture on Product of Some Complete Bipartite Graphs, pebbles from one vertex and adding another pebble to its adjacent vertex. The .-pebbling number of any vertex ., is the minimum number of pebbles required to move . pebbles to the vertex . by moving pebbles in a sequential manner. It is denoted by .. The .-pebbling number, is the minimum number of
29#
發(fā)表于 2025-3-26 12:50:36 | 只看該作者
30#
發(fā)表于 2025-3-26 17:21:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达拉特旗| 洪洞县| 衡阳市| 息烽县| 肃宁县| 什邡市| 清河县| 防城港市| 房山区| 建湖县| 呼图壁县| 扶余县| 汉沽区| 大渡口区| 安西县| 静安区| 高邮市| 丽水市| 资源县| 朔州市| 西吉县| 开化县| 阳泉市| 鄢陵县| 乐至县| 石景山区| 宿松县| 普定县| 西乌珠穆沁旗| 尚义县| 克拉玛依市| 伊春市| 吴川市| 达拉特旗| 郸城县| 洪洞县| 京山县| 八宿县| 徐水县| 会同县| 揭东县|