找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synchronization; Theory and Applicati Arkady Pikovsky,Yuri Maistrenko Book 2003 Springer Science+Business Media Dordrecht 2003 Counter.Phas

[復(fù)制鏈接]
樓主: Destruct
21#
發(fā)表于 2025-3-25 04:39:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:49:42 | 只看該作者
Basic Principles of Direct Chaotic Communications,modulation methods applicable in direct chaotic schemes. Signal processing in noncoherent and coherent receivers is discussed. The efficiency of direct chaotic communications is investigated by means of numerical simulation. Potential application areas are analyzed, including multiple access systems
23#
發(fā)表于 2025-3-25 12:54:40 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:22 | 只看該作者
Generalization of the Feigenbaum-Kadanoff-Shenker Renormalization and Critical Phenomena Associatedal behavior are discussed, which may occur at the onset of chaotic or strange nonchaotic attractors via quasiperiodicity at the golden-mean frequency ratio. Parameter space arrangement and respective scaling properties are discussed and illustrated.
25#
發(fā)表于 2025-3-25 21:04:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:43 | 只看該作者
27#
發(fā)表于 2025-3-26 06:58:52 | 只看該作者
Synchrony in Globally Coupled Chaotic, Periodic, and Mixed Ensembles of Dynamical Units,eneral ensembles of heterogeneous, continuous time dynamical units that, when uncoupled, are chaotic, periodic, or a mixture of both. A discussion of convergence issues, important for the proper implementation of our method, is included. Our work leads to a quantitative prediction for the critical c
28#
發(fā)表于 2025-3-26 09:56:01 | 只看該作者
Phase Synchronization of Regular and Chaotic Self-Sustained Oscillators,locking, we extend the notion of phase to autonoumous continuous-time . systems. Using as examples the well-known Lorenz and R ? ssler oscillators, we describe the phase synchronization of chaotic oscillators by periodic external force. Both statistical and topological aspects of this phenomenon are
29#
發(fā)表于 2025-3-26 13:02:00 | 只看該作者
30#
發(fā)表于 2025-3-26 19:58:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰城市| 昂仁县| 江都市| 上蔡县| 北流市| 商河县| 溆浦县| 巴彦淖尔市| 南陵县| 秦皇岛市| 湖北省| 绥棱县| 抚远县| 彭山县| 大竹县| 新沂市| 渝中区| 宜兴市| 凭祥市| 平顶山市| 柯坪县| 涪陵区| 文山县| 太湖县| 汨罗市| 哈巴河县| 湘潭县| 澳门| 舒城县| 宁陕县| 翼城县| 镇赉县| 广德县| 太康县| 云安县| 大方县| 濉溪县| 嘉定区| 娄烦县| 贞丰县| 稻城县|