找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Synchronization of Integral and Fractional Order Chaotic Systems; A Differential Algeb Rafael Martínez-Guerra,Claudia A. Pérez-Pinacho,Gi B

[復(fù)制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 05:30:23 | 只看該作者
Book 2015 systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and
22#
發(fā)表于 2025-3-25 10:22:27 | 只看該作者
1860-0832 plications and examples.Includes supplementary material: This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asympt
23#
發(fā)表于 2025-3-25 12:41:47 | 只看該作者
Generalized Synchronization for a Class of Nondifferentially Flat and Liouvillian Chaotic Systems,ents in a differential field. Finally, we construct a dynamical control obtained through a chain of integrators to reach the GS. This is illustrated by means of numerical simulations to show the effectiveness of the methodology proposed.
24#
發(fā)表于 2025-3-25 17:42:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:52:31 | 只看該作者
Secure Communications and Synchronization via a Sliding-Mode Observer,munication scheme is robust with respect to some disturbances and uncertainties. Three chaotic systems, the Duffing equation, Van der Pol oscillator, andChua’s circuit, are provided to illustrate the effectiveness of the chaotic communication.
26#
發(fā)表于 2025-3-26 04:08:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:22 | 只看該作者
28#
發(fā)表于 2025-3-26 09:21:22 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:14 | 只看該作者
30#
發(fā)表于 2025-3-26 17:06:46 | 只看該作者
https://doi.org/10.1007/978-3-319-15284-4Algebraic and Geometric Methods in Control Theory; Fractional Derivatives and Fractional Order System
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 南华县| 开阳县| 霍山县| 宁安市| 宾阳县| 常熟市| 瓮安县| 九台市| 合江县| 潞城市| 孝昌县| 开封县| 石渠县| 津南区| 高平市| 水富县| 乡宁县| 项城市| 青神县| 西贡区| 桐乡市| 永德县| 营山县| 杭州市| 枣庄市| 孝感市| 南漳县| 祁阳县| 莆田市| 郓城县| 白山市| 临漳县| 卢湾区| 成安县| 尤溪县| 宁波市| 益阳市| 潜山县| 微博| 镇平县|