找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Symmetries in Science II; Bruno Gruber,Romuald Lenczewski Book 1986 Springer Science+Business Media New York 1986 algebra.dynamics.electro

[復(fù)制鏈接]
樓主: 貪吃的人
41#
發(fā)表于 2025-3-28 16:27:22 | 只看該作者
Special Functions and Representations of su(2),ions of) commutative variables. The representation so transformed is thus typically presented in terms of differential operators and the usual boson operator calculus can be applied for performing computations.
42#
發(fā)表于 2025-3-28 19:21:24 | 只看該作者
43#
發(fā)表于 2025-3-29 01:56:30 | 只看該作者
Symmetry and Topology of the Configuration Space and Quantization,c field of the Dirac monopole is presented as an example illustrating the interplay of group representation theory and non-trivial topology. The exposition is based on our joint work. with B. Angermann and P. ?tovi?ek, and Ref. 5.
44#
發(fā)表于 2025-3-29 03:28:36 | 只看該作者
Dynamical Supersymmetric Dirac Hamiltonians,ike to consider is that of a neutral fermion interacting with a tensor field, say for example the electromagnetic field tensor. In this paper I shall use the language of QED since it is our best known realtivistic quantum theory. However, the Hamiltonians can have a more general applicability for example to QHD. or QCD..
45#
發(fā)表于 2025-3-29 10:41:58 | 只看該作者
46#
發(fā)表于 2025-3-29 14:07:02 | 只看該作者
Quantum Mechanics and Spectrum Generating Groups and Supergroups, the practice is different: Low energy spectra and structure of molecules are analyzed in terms of rotators and oscillators (and at slightly higher energies in terms of Kepler systems (one electron outside a core)). This is shown in Figure la.
47#
發(fā)表于 2025-3-29 18:12:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:49 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:34 | 只看該作者
50#
發(fā)表于 2025-3-30 06:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
登封市| 上蔡县| 壶关县| 宁陵县| 襄城县| 苏尼特左旗| 河北省| 濮阳县| 神木县| 六安市| 井陉县| 富阳市| 许昌市| 什邡市| 博白县| 蕲春县| 隆尧县| 申扎县| 彭州市| 固始县| 冀州市| 花莲市| 娄烦县| 凤翔县| 共和县| 益阳市| 阳春市| 鹰潭市| 广平县| 鹿邑县| 深泽县| 通渭县| 邹城市| 厦门市| 海淀区| 仁化县| 抚州市| 惠州市| 安顺市| 泸水县| 凤山县|