找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Symmetries in Science II; Bruno Gruber,Romuald Lenczewski Book 1986 Springer Science+Business Media New York 1986 algebra.dynamics.electro

[復(fù)制鏈接]
樓主: 貪吃的人
41#
發(fā)表于 2025-3-28 16:27:22 | 只看該作者
Special Functions and Representations of su(2),ions of) commutative variables. The representation so transformed is thus typically presented in terms of differential operators and the usual boson operator calculus can be applied for performing computations.
42#
發(fā)表于 2025-3-28 19:21:24 | 只看該作者
43#
發(fā)表于 2025-3-29 01:56:30 | 只看該作者
Symmetry and Topology of the Configuration Space and Quantization,c field of the Dirac monopole is presented as an example illustrating the interplay of group representation theory and non-trivial topology. The exposition is based on our joint work. with B. Angermann and P. ?tovi?ek, and Ref. 5.
44#
發(fā)表于 2025-3-29 03:28:36 | 只看該作者
Dynamical Supersymmetric Dirac Hamiltonians,ike to consider is that of a neutral fermion interacting with a tensor field, say for example the electromagnetic field tensor. In this paper I shall use the language of QED since it is our best known realtivistic quantum theory. However, the Hamiltonians can have a more general applicability for example to QHD. or QCD..
45#
發(fā)表于 2025-3-29 10:41:58 | 只看該作者
46#
發(fā)表于 2025-3-29 14:07:02 | 只看該作者
Quantum Mechanics and Spectrum Generating Groups and Supergroups, the practice is different: Low energy spectra and structure of molecules are analyzed in terms of rotators and oscillators (and at slightly higher energies in terms of Kepler systems (one electron outside a core)). This is shown in Figure la.
47#
發(fā)表于 2025-3-29 18:12:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:49 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:34 | 只看該作者
50#
發(fā)表于 2025-3-30 06:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄陵县| 宾阳县| 泰和县| 于田县| 东辽县| 云南省| 六枝特区| 砚山县| 南召县| 盘山县| 大连市| 鄱阳县| 调兵山市| 曲周县| 西林县| 平阳县| 宽甸| 宜宾县| 东明县| 温泉县| 桑植县| 互助| 红安县| 英吉沙县| 万山特区| 农安县| 颍上县| 巴中市| 肃宁县| 廉江市| 白玉县| 阜新| 白水县| 康保县| 安徽省| 平定县| 宁乡县| 崇阳县| 莱西市| 叙永县| 甘孜县|