找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Swarm, Evolutionary, and Memetic Computing; 6th International Co Bijaya Ketan Panigrahi,Ponnuthurai Nagaratnam Suga Conference proceedings

[復(fù)制鏈接]
查看: 23072|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:32:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Swarm, Evolutionary, and Memetic Computing
副標(biāo)題6th International Co
編輯Bijaya Ketan Panigrahi,Ponnuthurai Nagaratnam Suga
視頻videohttp://file.papertrans.cn/884/883690/883690.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Swarm, Evolutionary, and Memetic Computing; 6th International Co Bijaya Ketan Panigrahi,Ponnuthurai Nagaratnam Suga Conference proceedings
描述This volume constitutes the thoroughly refereed post-conference?proceedings of the 6th International Conference on Swarm, Evolutionary,?and Memetic Computing, SEMCCO 2015, held in Hyderabad, India, in?December 2015..The 23 full papers presented in this volume were carefully reviewed?and selected from 40 submissions for inclusion in the proceedings. The?papers cover a wide range of topics in swarm, evolutionary, memetic and?other intelligent computing algorithms and their real world applications?in problems selected from diverse domains of science and engineering..
出版日期Conference proceedings 2016
關(guān)鍵詞genetic algorithm; global optimization; meta-heuristic; particle swarm optimization; swarm intelligence;
版次1
doihttps://doi.org/10.1007/978-3-319-48959-9
isbn_softcover978-3-319-48958-2
isbn_ebook978-3-319-48959-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Swarm, Evolutionary, and Memetic Computing影響因子(影響力)




書目名稱Swarm, Evolutionary, and Memetic Computing影響因子(影響力)學(xué)科排名




書目名稱Swarm, Evolutionary, and Memetic Computing網(wǎng)絡(luò)公開度




書目名稱Swarm, Evolutionary, and Memetic Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Swarm, Evolutionary, and Memetic Computing被引頻次




書目名稱Swarm, Evolutionary, and Memetic Computing被引頻次學(xué)科排名




書目名稱Swarm, Evolutionary, and Memetic Computing年度引用




書目名稱Swarm, Evolutionary, and Memetic Computing年度引用學(xué)科排名




書目名稱Swarm, Evolutionary, and Memetic Computing讀者反饋




書目名稱Swarm, Evolutionary, and Memetic Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:50:06 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:34 | 只看該作者
Development of Back Propagation Neural Network (BPNN) Model to Predict Combustion Parameters of Dien layer is varied from 3 to 22, to architect a suitable network for the prediction of combustion parameters with good accuracy. Test results show that network with 4-19-4 architecture with trainlm algorithm can predict the four parameters (ID, CD, PP and HR) with correlation coefficients as 0.9892,
5#
發(fā)表于 2025-3-22 11:47:03 | 只看該作者
6#
發(fā)表于 2025-3-22 14:51:29 | 只看該作者
Variance Based Particle Swarm Optimization for Function Optimization and Feature Selection,henceforth. In VPSO, the velocity is influenced by the variance of the population. When the variance of the population is high, particles make use of exploitation and vice versa. This reduces the effect of swamping in local optimum. We have validated VPSO method for function optimization and feature
7#
發(fā)表于 2025-3-22 19:53:11 | 只看該作者
Analysis of Next-Generation Sequencing Data of miRNA for the Prediction of Breast Cancer, breast cancer. In this regard, we have developed a technique using Gravitation Search Algorithm, which optimizes the underlying classification performance of Support Vector Machine. The proposed technique is able to select the potential features, in this case miRNAs, in order to achieve better pred
8#
發(fā)表于 2025-3-22 23:59:08 | 只看該作者
Multi-objective Power Dispatch Using Stochastic Fractal Search Algorithm and TOPSIS,nd 13 generating unit systems. Results of stochastic fractal search algorithm with weighted sum method (SFSA_WS) are compared with SFSA with TOPSIS (SFSA_TOP) method. The results obtained by both cases are also compared with those available in recent literature, which confirms the potential of SFSA_
9#
發(fā)表于 2025-3-23 02:37:56 | 只看該作者
10#
發(fā)表于 2025-3-23 06:03:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 遂川县| 永平县| 景泰县| 洞口县| 集贤县| 阜城县| 霸州市| 武山县| 泰顺县| 安化县| 深圳市| 阳高县| 淮滨县| 江孜县| 达尔| 海盐县| 清丰县| 吴旗县| 美姑县| 元江| 马龙县| 运城市| 阳高县| 乌鲁木齐市| 茂名市| 黄陵县| 合作市| 乐亭县| 廊坊市| 林周县| 屏山县| 大邑县| 南充市| 乡城县| 读书| 五原县| 河间市| 永年县| 梁平县| 新郑市|