找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Swarm Intelligence; 7th International Co Marco Dorigo,Mauro Birattari,Thomas Stützle Conference proceedings 2010 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: Opiate
21#
發(fā)表于 2025-3-25 05:17:53 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:33 | 只看該作者
Heterogeneous Particle Swarm Optimizations proposed in this paper, where particles are allowed to follow different search behaviours selected from a behaviour pool, thereby efficiently addressing the exploration–exploitation trade-off problem. A preliminary empirical analysis is provided to show that much can be gained by using heterogeneous swarms.
23#
發(fā)表于 2025-3-25 15:17:03 | 只看該作者
Modern Continuous Optimization Algorithms for Tuning Real and Integer Algorithm Parametersinuous optimization algorithms instead of using a tedious, and error-prone, hands-on approach. In this paper, we study the performance of several continuous optimization algorithms for the algorithm parameter tuning task. As case studies, we use a number of optimization algorithms from the swarm intelligence literature.
24#
發(fā)表于 2025-3-25 16:27:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:21:46 | 只看該作者
26#
發(fā)表于 2025-3-26 01:11:39 | 只看該作者
A Robotic Validation of the Attractive Field Model: An Inter-disciplinary Model of Self-regulatory S that constitute a first validation of attractive filed model as a mechanism for MRTA and as a multi-disciplinary model of self-organisation in social systems. Our experiments used 16 e-puck robots in a 2m x 2m area.
27#
發(fā)表于 2025-3-26 07:02:47 | 只看該作者
A Thermodynamic Approach to the Analysis of Multi-robot Cooperative Localization under Independent Exing assumptions are used during the analysis. The goal is not to derive hard lower or upper bounds but rather to characterize the robots expected behavior. In particular, to predict the expected localization error. The predictions were validated using simulations. We believe that this kind of analysis can be beneficial in many other cases.
28#
發(fā)表于 2025-3-26 09:23:59 | 只看該作者
An Efficient Optimization Method for Revealing Local Optima of Projection Pursuit Indicesmature convergence to local optima. This method called Tribes is a hybrid Particle Swarm Optimization method (PSO) based on a stochastic optimization technique developed in [2]. The computation is fast even for big volumes of data so that the use of the method in the field of projection pursuit fulfills the statistician expectations.
29#
發(fā)表于 2025-3-26 12:50:07 | 只看該作者
Ant Colony Optimisation for Ligand Dockingroblem resulting in a high-performing optimisation approach. We discuss certain aspects of the hybridisation strategy including the integration of . into the search process and compare the performance to the . currently used in GOLD.
30#
發(fā)表于 2025-3-26 20:17:09 | 只看該作者
Automatic Configuration of Multi-Objective ACO Algorithmshms clearly outperform the best performing MOACO algorithms that have been proposed in the literature. As far as we are aware, this paper is also the first to apply automatic algorithm configuration techniques to multi-objective stochastic local search algorithms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 07:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闻喜县| 寻乌县| 杭锦旗| 仁化县| 洞口县| 乌鲁木齐县| 武陟县| 广汉市| 渝北区| 古田县| 遵化市| 长顺县| 奉化市| 特克斯县| 克拉玛依市| 景宁| 乐陵市| 阿合奇县| 永胜县| 获嘉县| 宜宾县| 宁波市| 咸阳市| 平定县| 紫金县| 大城县| 龙南县| 威海市| 仁化县| 弋阳县| 万山特区| 鲁甸县| 汉沽区| 南岸区| 兴文县| 海丰县| 池州市| 乐至县| 大厂| 汉沽区| 宜良县|