找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Survival Analysis: State of the Art; John P. Klein,Prem K. Goel Book 1992 Springer Science+Business Media B.V. 1992 Estimator.Radiologiein

[復(fù)制鏈接]
樓主: HEIR
31#
發(fā)表于 2025-3-26 21:40:12 | 只看該作者
Kernel Density Estimation from Record-Breaking Dataments. Here, for such record-breaking data, kernel density estimation is considered. For a single record-breaking sample, consistent estimation is not possible except in the extreme tails of the distribution. Hence, replication is required, and for m such independent record-breaking samples, the ker
32#
發(fā)表于 2025-3-27 03:35:34 | 只看該作者
Semiparametric Estimation Of Parametric Hazard Ratesmetric ones are sometimes too biased while the nonparametric ones are sometimes too variable. There should therefore be scope for methods that somehow try to combine parametric and nonparametric features. In the present paper three semiparametric approaches to hazard rate estimation are presented. T
33#
發(fā)表于 2025-3-27 08:26:09 | 只看該作者
Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observatioure time observations, we show that the standard maximum partial likelihood estimate of the regression coefficient in the Cox model is still consistent and asymptotically normal. However, the corresponding standard variance-covariance estimate may no longer be valid due to the dependence among membe
34#
發(fā)表于 2025-3-27 09:31:28 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:02 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:22 | 只看該作者
38#
發(fā)表于 2025-3-28 05:59:30 | 只看該作者
Bayesian Computations in Survival Models Via the Gibbs Samplerperspective, these features combine to create difficult computational problems by seeming to require (multi-dimensional) numerical integrals over awkwardly defined regions. This paper illustrates how these apparent difficulties can be overcome, in both parametric and nonparametric settings, by the Gibbs sampler approach to Bayesian computation.
39#
發(fā)表于 2025-3-28 09:13:52 | 只看該作者
40#
發(fā)表于 2025-3-28 10:53:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽水市| 招远市| 涡阳县| 宜州市| 昆山市| 尚义县| 启东市| 鄂尔多斯市| 水城县| 昌黎县| 大渡口区| 常宁市| 嫩江县| 沁水县| 黔西县| 乌拉特前旗| 林甸县| 江津市| 河津市| 原阳县| 轮台县| 京山县| 林芝县| 塘沽区| 永安市| 高邑县| 和田县| 温州市| 田林县| 宕昌县| 临沂市| 清新县| 南丹县| 湘乡市| 西充县| 台东县| 陵川县| 平遥县| 东丰县| 称多县| 凤城市|