找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Subspace Methods for Pattern Recognition in Intelligent Environment; Yen-Wei Chen,Lakhmi C. Jain Book 2014 Springer-Verlag Berlin Heidelbe

[復制鏈接]
樓主: hypothyroidism
21#
發(fā)表于 2025-3-25 07:11:03 | 只看該作者
22#
發(fā)表于 2025-3-25 08:01:14 | 只看該作者
1860-949X s research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extrac
23#
發(fā)表于 2025-3-25 11:55:17 | 只看該作者
Active Shape Model and Its Application to Face Alignment,e best match position between the model and the data in a new image. It has been successfully applied to many problems and we apply ASM to the face recognition. We represent all shapes with a set of landmarks to form a Point Distribution Model (PDM) respectively. After landmarks alignment and Princi
24#
發(fā)表于 2025-3-25 16:55:05 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:31 | 只看該作者
Independent Component Analysis and Its Application to Classification of High-resolution Remote Sensdependent as possible. It has been successfully applied to many problems, such as blind source separation. We apply ICA to high-resolution remote sensing images to obtain an efficient representation of color information. The three independent components are in opponent-color model by which the respo
26#
發(fā)表于 2025-3-26 00:27:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:05:45 | 只看該作者
Local Structure Preserving Based Subspace Analysis Methods and Applications,ts the intrinsic attributes of samples. In this chapter, inspired by the idea of local structure preserving, we propose two novel subspace methods for face recognition and image clustering tasks. The first is named Supervised Kernel Locality Preserving Projections (SKLPP) for face recognition task,
28#
發(fā)表于 2025-3-26 09:07:55 | 只看該作者
Sparse Representation for Image Super-Resolution,eal with the image super-resolution problem with sparse coding, which is based on the well reconstruction of any local image patch by a sparse linear combination of an appropriately chosen over-complete dictionary. Therein the chosen LR (Low-resolution) and HR (High-resolution) dictionaries have to
29#
發(fā)表于 2025-3-26 15:31:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
桃园市| 凤阳县| 额敏县| 安仁县| 嘉鱼县| 寿阳县| 宝山区| 沁水县| 晴隆县| 锡林郭勒盟| 淄博市| 平泉县| 胶州市| 陇南市| 铅山县| 青川县| 库尔勒市| 大邑县| 临漳县| 太谷县| 闵行区| 响水县| 德州市| 稻城县| 鲜城| 久治县| 平泉县| 清原| 额济纳旗| 西平县| 鹿邑县| 简阳市| 潢川县| 惠安县| 壶关县| 屏东县| 隆昌县| 泗洪县| 桂阳县| 阜新| 和林格尔县|