找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sublinear Algorithms for Big Data Applications; Dan Wang,Zhu Han Book 2015 The Author(s) 2015 Big data applications.Big data processing.Sm

[復(fù)制鏈接]
查看: 52216|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:00:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Sublinear Algorithms for Big Data Applications
編輯Dan Wang,Zhu Han
視頻videohttp://file.papertrans.cn/882/881324/881324.mp4
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Sublinear Algorithms for Big Data Applications;  Dan Wang,Zhu Han Book 2015 The Author(s) 2015 Big data applications.Big data processing.Sm
描述The brief focuses on applying sublinear algorithms to manage critical big data challenges. The text offers an essential introduction to sublinear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bridging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.
出版日期Book 2015
關(guān)鍵詞Big data applications; Big data processing; Smart grids; Sublinear algorithms; Wireless sensor networks
版次1
doihttps://doi.org/10.1007/978-3-319-20448-2
isbn_softcover978-3-319-20447-5
isbn_ebook978-3-319-20448-2Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2015
The information of publication is updating

書目名稱Sublinear Algorithms for Big Data Applications影響因子(影響力)




書目名稱Sublinear Algorithms for Big Data Applications影響因子(影響力)學(xué)科排名




書目名稱Sublinear Algorithms for Big Data Applications網(wǎng)絡(luò)公開度




書目名稱Sublinear Algorithms for Big Data Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Sublinear Algorithms for Big Data Applications被引頻次




書目名稱Sublinear Algorithms for Big Data Applications被引頻次學(xué)科排名




書目名稱Sublinear Algorithms for Big Data Applications年度引用




書目名稱Sublinear Algorithms for Big Data Applications年度引用學(xué)科排名




書目名稱Sublinear Algorithms for Big Data Applications讀者反饋




書目名稱Sublinear Algorithms for Big Data Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:33 | 只看該作者
Application on a Smart Grid,ed. An illustration of a smart grid system is given in Fig.?5.1. With these powerful characteristics brought about by modern electrical technologies, a smart grid significantly alters the way utility companies, governments, customers, and business participants view electricity transmission and its associated services.
地板
發(fā)表于 2025-3-22 04:59:50 | 只看該作者
Book 2015theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.
5#
發(fā)表于 2025-3-22 08:55:12 | 只看該作者
2191-5768 dging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.978-3-319-20447-5978-3-319-20448-2Series ISSN 2191-5768 Series E-ISSN 2191-5776
6#
發(fā)表于 2025-3-22 13:19:32 | 只看該作者
2191-5768 inear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bri
7#
發(fā)表于 2025-3-22 19:48:45 | 只看該作者
8#
發(fā)表于 2025-3-22 23:34:09 | 只看該作者
Basics for Sublinear Algorithms,pproximate factor in approximation algorithms. This confidence parameter is the key trade-off where the complexity of the algorithm can reduce to sublinear. We will rigidly define these parameters in this chapter.
9#
發(fā)表于 2025-3-23 02:31:16 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:21 | 只看該作者
Basics for Sublinear Algorithms,the history of the development of sublinear algorithms in the theoretical research line. Intrinsically, sublinear algorithms can be considered as one branch of approximation algorithms with confidence guarantees. A sublinear algorithm says that the accuracy of the algorithm output will not deviate f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜章县| 布拖县| 临沭县| 四川省| 双牌县| 武城县| 临猗县| 连云港市| 无为县| 铜梁县| 中山市| 长汀县| 堆龙德庆县| 新营市| 汉源县| 吉林省| 来安县| 龙门县| 白山市| 远安县| 英吉沙县| 建平县| 日照市| 堆龙德庆县| 鹤山市| 乐都县| 堆龙德庆县| 耿马| 玉环县| 长汀县| 柳河县| 保亭| 卢龙县| 泗水县| 乐平市| 嘉祥县| 金门县| 铜山县| 右玉县| 西贡区| 博乐市|