找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Subgroup Growth; Alexander Lubotzky,Dan Segal Book 2003 Birkh?user Verlag 2003 Abelian group.Algebra.Algebraic structure.Group theory.Prim

[復制鏈接]
樓主: 啞劇表演
41#
發(fā)表于 2025-3-28 14:57:27 | 只看該作者
42#
發(fā)表于 2025-3-28 20:10:18 | 只看該作者
Free Groups. By considering homomorphisms of a .-generator group . into Sym(.), we showed in §1.1 that .(.) ≤ . · (.!). for each .. It is not much harder to see that asymptotically this bound is achieved. Rather surprisingly, the same applies also to the number .(.) of maximal subgroups of index .. The precise
43#
發(fā)表于 2025-3-28 23:02:19 | 只看該作者
Groups with Exponential Subgroup Growthy exponential type is certainly some kind of restriction. Can it be characterized algebraically? This question seems difficult to answer, because the groups with exponential subgroup growth encompass a huge variety of examples. This is not really surprising, because a very mild algebraic condition i
44#
發(fā)表于 2025-3-29 06:46:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:09 | 只看該作者
46#
發(fā)表于 2025-3-29 11:58:33 | 只看該作者
The Generalized Congruence Subgroup Problemses of valuations) of . is denoted ., the finite subset of ‘infinite primes’ (archimedean valuations) is .∞, and ..∞ = .; so . may be identified with the set of non-zero prime ideals of .. For each υ ∈ . the υ-completion of . is denoted ..
47#
發(fā)表于 2025-3-29 17:36:57 | 只看該作者
48#
發(fā)表于 2025-3-29 21:04:07 | 只看該作者
49#
發(fā)表于 2025-3-30 00:35:47 | 只看該作者
Profinite Groups with Polynomial Subgroup Growth of finite rank. The proof involved two kinds of argument: a ‘local’ part, analysing the finite quotients of the group, and a ‘global’ part which involved representing the group as a linear group. The latter depended crucially on the group being finitely generated, and the result is not true without
50#
發(fā)表于 2025-3-30 05:38:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
张家口市| 博湖县| 青河县| 西峡县| 邯郸县| 吉隆县| 会宁县| 双流县| 潜山县| 新郑市| 台东县| 连城县| 西宁市| 和林格尔县| 无极县| 衡南县| 牙克石市| 剑川县| 吉安市| 陕西省| 洞头县| 泸溪县| 罗甸县| 读书| 化德县| 德安县| 崇州市| 旅游| 白山市| 沅江市| 腾冲县| 盈江县| 台东县| 遵化市| 天津市| 连山| 体育| 黄大仙区| 大庆市| 黑河市| 奈曼旗|