找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Subgroup Growth; Alexander Lubotzky,Dan Segal Book 2003 Birkh?user Verlag 2003 Abelian group.Algebra.Algebraic structure.Group theory.Prim

[復制鏈接]
樓主: 啞劇表演
41#
發(fā)表于 2025-3-28 14:57:27 | 只看該作者
42#
發(fā)表于 2025-3-28 20:10:18 | 只看該作者
Free Groups. By considering homomorphisms of a .-generator group . into Sym(.), we showed in §1.1 that .(.) ≤ . · (.!). for each .. It is not much harder to see that asymptotically this bound is achieved. Rather surprisingly, the same applies also to the number .(.) of maximal subgroups of index .. The precise
43#
發(fā)表于 2025-3-28 23:02:19 | 只看該作者
Groups with Exponential Subgroup Growthy exponential type is certainly some kind of restriction. Can it be characterized algebraically? This question seems difficult to answer, because the groups with exponential subgroup growth encompass a huge variety of examples. This is not really surprising, because a very mild algebraic condition i
44#
發(fā)表于 2025-3-29 06:46:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:47:09 | 只看該作者
46#
發(fā)表于 2025-3-29 11:58:33 | 只看該作者
The Generalized Congruence Subgroup Problemses of valuations) of . is denoted ., the finite subset of ‘infinite primes’ (archimedean valuations) is .∞, and ..∞ = .; so . may be identified with the set of non-zero prime ideals of .. For each υ ∈ . the υ-completion of . is denoted ..
47#
發(fā)表于 2025-3-29 17:36:57 | 只看該作者
48#
發(fā)表于 2025-3-29 21:04:07 | 只看該作者
49#
發(fā)表于 2025-3-30 00:35:47 | 只看該作者
Profinite Groups with Polynomial Subgroup Growth of finite rank. The proof involved two kinds of argument: a ‘local’ part, analysing the finite quotients of the group, and a ‘global’ part which involved representing the group as a linear group. The latter depended crucially on the group being finitely generated, and the result is not true without
50#
發(fā)表于 2025-3-30 05:38:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
社旗县| 黔西| 旬邑县| 阿巴嘎旗| 尼勒克县| 道孚县| 新宁县| 哈尔滨市| 北碚区| 阜康市| 沂源县| 云阳县| 甘泉县| 桃园县| 西青区| 汾阳市| 霸州市| 赞皇县| 竹北市| 望城县| 武胜县| 乌苏市| 闻喜县| 本溪市| 文水县| 沙坪坝区| 嘉禾县| 潜山县| 新巴尔虎右旗| 康平县| 个旧市| 公主岭市| 云南省| 祁门县| 花垣县| 珲春市| 阳谷县| 凉山| 淄博市| 嘉鱼县| 新丰县|