找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Subdivision Surfaces; J?rg Peters,Ulrich Reif Textbook 2008 Springer-Verlag Berlin Heidelberg 2008 Graph.Sim.algorithms.computer graphics.

[復(fù)制鏈接]
樓主: otitis-externa
21#
發(fā)表于 2025-3-25 05:39:45 | 只看該作者
22#
發(fā)表于 2025-3-25 09:22:41 | 只看該作者
23#
發(fā)表于 2025-3-25 12:20:34 | 只看該作者
Subdivision Surfaces,nd an L-shaped .. Repeating the refinement for the new extraordinary patch yields another patch and another segment of even smaller size. If this process is iterated ad infinitum, the initial patch is eventually replaced by a sequence of smaller and smaller segments, and the extraordinary point itse
24#
發(fā)表于 2025-3-25 17:00:24 | 只看該作者
-Subdivision Algorithms,is characterized by a double positive subdominant eigenvalue. Here, the characteristic ring, which is a planar ring built from the subdominant eigenfunctions, plays a key role in the analysis. With a careful generalization of terms, Sect. 5.3/89 yields a complete classification of all .-subdivision
25#
發(fā)表于 2025-3-25 21:35:23 | 只看該作者
Shape Analysis and ,-Algorithms,ces and derive asymptotic expansions for the fundamental forms, the embedded Weingarten map, and the principal curvatures. In particular, we determine limit exponents for .-integrability of principal curvatures in terms of the leading eigenvalues of the subdivision matrix. The . will play a key role
26#
發(fā)表于 2025-3-26 02:17:21 | 只看該作者
Approximation and Linear Independence,convergence of the geometric distance, which is crucial for applications in Computer Graphics, depends on the subsubdominant eigenvalue μ..In Sect. 8.2/169, we consider the question of local and global linear independence of the generating splines . = [.,…, .]. This topic is closely related to the e
27#
發(fā)表于 2025-3-26 06:44:04 | 只看該作者
Conclusion, of Warren and Weimer [WW02]..Necessarily, the material presented here is a compromise between generality and specificity. Therefore, to conclude, we want to review the basic assumptions of our analysis framework, check applicability to the rich ‘zoo’ of subdivision algorithms in current use, and di
28#
發(fā)表于 2025-3-26 08:53:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:26 | 只看該作者
ow. These submissions provide a snapshot of how NASA appeared to me and many other outside observers at the turn of the twenty-first century, and what was needed for rebuilding and focusing that storied agency. NASA’s newest Administrator, Dr Michael Griffin, has begun to address these concerns.
30#
發(fā)表于 2025-3-26 20:01:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 磐安县| 彰化市| 年辖:市辖区| 乳山市| 大埔县| 奉节县| 中方县| 六枝特区| 长子县| 辽阳市| 广宗县| 江华| 洞口县| 克东县| 青海省| 胶南市| 体育| 南丰县| 曲阳县| 大理市| 抚远县| 凯里市| 沙河市| 莆田市| 西贡区| 大余县| 阆中市| 唐山市| 临安市| 广宁县| 思茅市| 安图县| 长沙市| 剑河县| 沙坪坝区| 富裕县| 宁安市| 安福县| 北流市| 班玛县|